In this paper,we propose a hybrid power model that includes the power consumption of not only the registers but also part of the combinational logic.By doing knownkey analysis with this hybrid model,power side-channel...In this paper,we propose a hybrid power model that includes the power consumption of not only the registers but also part of the combinational logic.By doing knownkey analysis with this hybrid model,power side-channel leakage caused by correct keys can be detected.In experiment,PRINTcipher and DES algorithms were chosen as analysis targets and combinational logic s-box unit was selected to build power template.The analysis results showed the signal-to-noise ratio(SNR) power consumption increase of more than 20%after considering s-box's power consumption so that the information of keys can be obtained with just half number of power traces.In addition,the side channel-leakage detection capability of our method also shows better effectiveness that can identify the correct keys.展开更多
The need to simultaneously balance security and fairness in quantum key agreement(QKA) makes it challenging to design a flawless QKA protocol, especially a multiparty quantum key agreement(MQKA) protocol. When designi...The need to simultaneously balance security and fairness in quantum key agreement(QKA) makes it challenging to design a flawless QKA protocol, especially a multiparty quantum key agreement(MQKA) protocol. When designing an MQKA protocol,two modes can be used to transmit the quantum information carriers: travelling mode and distributed mode. MQKA protocols usually have a higher qubit efficiency in travelling mode than in distributed mode. Thus, several travelling mode MQKA protocols have been proposed. However, almost all of these are vulnerable to collusion attacks from internal betrayers. This paper proposes an improved MQKA protocol that operates in travelling mode with Einstein-Podolsky-Rosen pairs. More importantly, we present a new travelling mode MQKA protocol that uses single photons, which is more feasible than previous methods under current technologies.展开更多
基金supported by Major State Basic Research Development Program(No. 2013CB338004)National Natural Science Foundation of China(No.61402286, 61472250,61472249,61202372)+1 种基金National Science and Technology Major Project of the Ministry of Science and Technology of China (No.2014ZX01032401-001)Plan of Action for the Innovation of Science and Technology of Shanghai Municipal Science and Technology Commission(No.14511100300)
文摘In this paper,we propose a hybrid power model that includes the power consumption of not only the registers but also part of the combinational logic.By doing knownkey analysis with this hybrid model,power side-channel leakage caused by correct keys can be detected.In experiment,PRINTcipher and DES algorithms were chosen as analysis targets and combinational logic s-box unit was selected to build power template.The analysis results showed the signal-to-noise ratio(SNR) power consumption increase of more than 20%after considering s-box's power consumption so that the information of keys can be obtained with just half number of power traces.In addition,the side channel-leakage detection capability of our method also shows better effectiveness that can identify the correct keys.
基金supported by the National Natural Science Foundation of China(Grant Nos.61501414,61602045,61601171,61309029,11504024 and 61502041)
文摘The need to simultaneously balance security and fairness in quantum key agreement(QKA) makes it challenging to design a flawless QKA protocol, especially a multiparty quantum key agreement(MQKA) protocol. When designing an MQKA protocol,two modes can be used to transmit the quantum information carriers: travelling mode and distributed mode. MQKA protocols usually have a higher qubit efficiency in travelling mode than in distributed mode. Thus, several travelling mode MQKA protocols have been proposed. However, almost all of these are vulnerable to collusion attacks from internal betrayers. This paper proposes an improved MQKA protocol that operates in travelling mode with Einstein-Podolsky-Rosen pairs. More importantly, we present a new travelling mode MQKA protocol that uses single photons, which is more feasible than previous methods under current technologies.