通勤是具有周期性和稳定性的城市居民出行行为,是城市发展规划和公共交通管理的重要研究内容。出租车GPS(Global Position System,全球定位系统)轨迹数据在一定程度上反映了城市交通状况和市民出行模式。针对出租车区域性通勤模式识别问...通勤是具有周期性和稳定性的城市居民出行行为,是城市发展规划和公共交通管理的重要研究内容。出租车GPS(Global Position System,全球定位系统)轨迹数据在一定程度上反映了城市交通状况和市民出行模式。针对出租车区域性通勤模式识别问题,本文提出一种基于改进K-means算法的通勤交通小区识别方法。该方法主要包括3个步骤:划分交通小区、生成交通小区之间的流量转移矩阵和识别通勤交通小区对。参考现有的交通小区划分方法,本文提出一种基于细粒度单元的自下而上的交通小区划分方法。在通勤交通小区对识别模型中,以高峰时段的流量及其离散系数作为输入特征,基于改进K-means算法识别通勤交通小区对。最后,基于重庆市出租车GPS数据集进行实验验证,结果表明该方法效果显著。展开更多
针对电池储能系统(battery energy storage system,BESS)进行光伏波动平抑时寿命损耗高及荷电状态(state of charge,SOC)一致性差的问题,提出了光伏波动平抑下改进K-means的BESS动态分组控制策略。首先,采用最小最大调度方法获取光伏并...针对电池储能系统(battery energy storage system,BESS)进行光伏波动平抑时寿命损耗高及荷电状态(state of charge,SOC)一致性差的问题,提出了光伏波动平抑下改进K-means的BESS动态分组控制策略。首先,采用最小最大调度方法获取光伏并网指令。其次,设计了改进侏儒猫鼬优化算法(improved dwarf mongoose optimizer,IDMO),并利用它对传统K-means聚类算法进行改进,加快了聚类速度。接着,制定了电池单元动态分组原则,并根据电池单元SOC利用改进K-means将其分为3个电池组。然后,设计了基于充放电函数的电池单元SOC一致性功率分配方法,并据此提出BESS双层功率分配策略,上层确定电池组充放电顺序及指令,下层计算电池单元充放电指令。对所提策略进行仿真验证,结果表明,所设计的IDMO具有更高的寻优精度及更快的寻优速度。所提BESS平抑光伏波动策略在有效平抑波动的同时,降低了BESS运行寿命损耗并提高了电池单元SOC的均衡性。展开更多
受限于自然条件,光伏出力具有很强的随机性。为准确评估轨道交通基础设施分布式光伏发电的光伏出力特性,提出一种基于改进K-means聚类算法的轨道交通基础设施分布式光伏发电典型场景生成方法,并基于此进行光伏出力特性分析。首先,基于...受限于自然条件,光伏出力具有很强的随机性。为准确评估轨道交通基础设施分布式光伏发电的光伏出力特性,提出一种基于改进K-means聚类算法的轨道交通基础设施分布式光伏发电典型场景生成方法,并基于此进行光伏出力特性分析。首先,基于分布式光伏发电设施以及气象数据,利用PVsyst软件模拟光伏发电出力数据。然后,针对基本K-means聚类算法聚类参数和初始聚类中心盲目性高的问题,结合聚类有效性指标(Density based index,DBI)和层次聚类对其进行改进并利用改进K-means聚类算法生成光伏典型日出力场景。最后,基于华中地区某地轨道交通基础设施分布式光伏系统对所提方法的有效性和优越性进行验证,并通过定性和定量分析各典型场景的出力特性揭示轨道交通基础设施分布式光伏出力的规律和特点。展开更多
为了提高纯电动汽车再生制动能量回收效率,同时保证车辆制动效果,提出了运用改进鲸鱼算法优化纯电动汽车再生制动模糊控制策略。引入电池荷电状态(State of Charge,SOC)、车速和制动强度作为模糊控制输入,以再生制动比例系数K作为输出,...为了提高纯电动汽车再生制动能量回收效率,同时保证车辆制动效果,提出了运用改进鲸鱼算法优化纯电动汽车再生制动模糊控制策略。引入电池荷电状态(State of Charge,SOC)、车速和制动强度作为模糊控制输入,以再生制动比例系数K作为输出,利用改进鲸鱼算法优化控制参数,从而提高前轴电机制动力占比。同时,改进鲸鱼算法的自适应权重避免了算法迭代过程中陷入局部最优。通过仿真分析验证了在NEDC工况下,优化后的模糊控制策略相比优化前和传统控制策略在提高能量回收效果的同时,也满足了制动的有效性。展开更多
文摘通勤是具有周期性和稳定性的城市居民出行行为,是城市发展规划和公共交通管理的重要研究内容。出租车GPS(Global Position System,全球定位系统)轨迹数据在一定程度上反映了城市交通状况和市民出行模式。针对出租车区域性通勤模式识别问题,本文提出一种基于改进K-means算法的通勤交通小区识别方法。该方法主要包括3个步骤:划分交通小区、生成交通小区之间的流量转移矩阵和识别通勤交通小区对。参考现有的交通小区划分方法,本文提出一种基于细粒度单元的自下而上的交通小区划分方法。在通勤交通小区对识别模型中,以高峰时段的流量及其离散系数作为输入特征,基于改进K-means算法识别通勤交通小区对。最后,基于重庆市出租车GPS数据集进行实验验证,结果表明该方法效果显著。
文摘针对电池储能系统(battery energy storage system,BESS)进行光伏波动平抑时寿命损耗高及荷电状态(state of charge,SOC)一致性差的问题,提出了光伏波动平抑下改进K-means的BESS动态分组控制策略。首先,采用最小最大调度方法获取光伏并网指令。其次,设计了改进侏儒猫鼬优化算法(improved dwarf mongoose optimizer,IDMO),并利用它对传统K-means聚类算法进行改进,加快了聚类速度。接着,制定了电池单元动态分组原则,并根据电池单元SOC利用改进K-means将其分为3个电池组。然后,设计了基于充放电函数的电池单元SOC一致性功率分配方法,并据此提出BESS双层功率分配策略,上层确定电池组充放电顺序及指令,下层计算电池单元充放电指令。对所提策略进行仿真验证,结果表明,所设计的IDMO具有更高的寻优精度及更快的寻优速度。所提BESS平抑光伏波动策略在有效平抑波动的同时,降低了BESS运行寿命损耗并提高了电池单元SOC的均衡性。
文摘受限于自然条件,光伏出力具有很强的随机性。为准确评估轨道交通基础设施分布式光伏发电的光伏出力特性,提出一种基于改进K-means聚类算法的轨道交通基础设施分布式光伏发电典型场景生成方法,并基于此进行光伏出力特性分析。首先,基于分布式光伏发电设施以及气象数据,利用PVsyst软件模拟光伏发电出力数据。然后,针对基本K-means聚类算法聚类参数和初始聚类中心盲目性高的问题,结合聚类有效性指标(Density based index,DBI)和层次聚类对其进行改进并利用改进K-means聚类算法生成光伏典型日出力场景。最后,基于华中地区某地轨道交通基础设施分布式光伏系统对所提方法的有效性和优越性进行验证,并通过定性和定量分析各典型场景的出力特性揭示轨道交通基础设施分布式光伏出力的规律和特点。
文摘为了提高纯电动汽车再生制动能量回收效率,同时保证车辆制动效果,提出了运用改进鲸鱼算法优化纯电动汽车再生制动模糊控制策略。引入电池荷电状态(State of Charge,SOC)、车速和制动强度作为模糊控制输入,以再生制动比例系数K作为输出,利用改进鲸鱼算法优化控制参数,从而提高前轴电机制动力占比。同时,改进鲸鱼算法的自适应权重避免了算法迭代过程中陷入局部最优。通过仿真分析验证了在NEDC工况下,优化后的模糊控制策略相比优化前和传统控制策略在提高能量回收效果的同时,也满足了制动的有效性。