-
题名基于改进深度回归网络的无创血糖检测算法研究
被引量:1
- 1
-
-
作者
贺梦嘉
吴迎年
杨睿
-
机构
北京信息科技大学自动化学院
-
出处
《系统仿真学报》
CAS
CSCD
北大核心
2019年第11期2492-2498,共7页
-
基金
促进高校内涵发展“信息+”项目(5111823311)
北京信息科技大学重点研究培育项目(5221823307)
北京信息科技大学教改重点资助项目(2019JGZD02)
-
文摘
有创测量血糖有强烈不适感和感染风险,所以无创血糖的研究有很强的现实意义。目前光学方法不便于实际使用,能量守恒方法要求严苛,针对以上问题,采用红外线热像图来进行血糖的检测。采集人脸的红外线热像图后,提取其灰度特征再降维,为了加快训练速度和防止过拟合改进了深度回归网络,采用改进的深度回归网络对得到的红外线热像图灰度特征进行建模,在测试集上取得了比较理想的检测效果,为以后的无创血糖检测算法的研究提供了一种新的研究方法和设计思路。
-
关键词
无创血糖检测
改进深度回归网络
红外线热像图
图片特征提取
PCA降维
-
Keywords
noninvasive blood sugar detection
improved depth regression network
infrared thermography
image feature extraction
pca dimensionality reduction
-
分类号
TP391.9
[自动化与计算机技术—计算机应用技术]
-