期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进深度森林算法的高速公路交通事故风险预测
1
作者 张浩 《安全与环境工程》 CAS CSCD 北大核心 2024年第6期91-99,共9页
高速公路交通事故风险预测对于实行动态交通安全管理至关重要。为探究影响高速公路交通事故风险的主要因素以及准确预测高速公路交通事故风险,提出了一种基于改进深度森林算法的高速公路交通事故风险预测模型。首先以高速公路交通事故... 高速公路交通事故风险预测对于实行动态交通安全管理至关重要。为探究影响高速公路交通事故风险的主要因素以及准确预测高速公路交通事故风险,提出了一种基于改进深度森林算法的高速公路交通事故风险预测模型。首先以高速公路交通事故数据、交通流数据、天气数据、道路条件和特殊时间段数据为基础,选取了能够表征高速公路交通事故风险的特征变量,并采用随机森林算法对特征变量的重要度进行了计算,筛选出对高速公路交通事故风险影响较大的重要特征变量,以解决后面计算过程中的维度灾难问题;然后运用基于决策树的LightGBM和XGBoost算法对深度森林模型的级联森林结构进行了改进;最后将改进深度森林算法应用于高速公路事故风险预测。结果表明:与现有的SVM、随机森林和深度森林算法相比,改进深度森林算法具有更优的预测性能,其预测准确率达到了88.84%,预测结果能为高速公路交通管理部门制定更为有效的安全管控措施提供决策支持。 展开更多
关键词 高速公路交通事故 风险预测 改进深度森林算法 深度学习
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部