期刊文献+
共找到58篇文章
< 1 2 3 >
每页显示 20 50 100
考虑增强特征选择的深度卷积-时序网络短期风功率预测
1
作者 付炳喆 王玮 +2 位作者 任国瑞 杨健 李沂洹 《动力工程学报》 CAS CSCD 北大核心 2024年第10期1565-1573,共9页
准确的风电功率预测对电网安全与风资源合理利用具有重要意义。为提高风电功率预测精度,提出一种涵盖异常值检测、增强特征选择和超参数调整等多个环节的风电功率预测策略。首先,采用孤立森林算法筛除风电数据的异常值和冗余值;其次,引... 准确的风电功率预测对电网安全与风资源合理利用具有重要意义。为提高风电功率预测精度,提出一种涵盖异常值检测、增强特征选择和超参数调整等多个环节的风电功率预测策略。首先,采用孤立森林算法筛除风电数据的异常值和冗余值;其次,引入最大互信息系数(MIC)作为特征选择评价指标,获得高相关度的输入特征;此外,建立了优化的卷积神经网络(CNN)与门控循环单元(GRU)神经网络组合模型,其中CNN层将MIC对特征重要性的理解进一步增强,并以多层GRU层对风功率时序关系建模。实际算例表明:所提出的优化神经网络模型较文中其他预测模型,预测指标误差更小,决定系数R 2平均提高了4.44%,平均绝对误差M AE、均方根误差R MSE分别平均降低了62.02%和61.51%,具有较高的预测精度。 展开更多
关键词 风电功率预测 增强特征选择 深度神经网络 北方苍鹰优化算法
下载PDF
滚动轴承故障特征选择的Filter与改进灰狼优化混合算法 被引量:3
2
作者 侯钰哲 李舜酩 +3 位作者 龚思琪 黄继刚 张建兵 卢静 《计算机集成制造系统》 EI CSCD 北大核心 2023年第5期1452-1461,共10页
为了从原始高维特征空间中选择最具鉴别能力的特征,提高轴承故障诊断精度,提出了一种Filter与改进灰狼优化混合的故障特征选择算法。首先,针对滚动轴承的原始振动信号,利用一种基于Hilbert-Huang变换的时频域特征提取策略建立高维敏感... 为了从原始高维特征空间中选择最具鉴别能力的特征,提高轴承故障诊断精度,提出了一种Filter与改进灰狼优化混合的故障特征选择算法。首先,针对滚动轴承的原始振动信号,利用一种基于Hilbert-Huang变换的时频域特征提取策略建立高维敏感特征集合。然后,通过由ReliefF算法与拉普拉斯分数构成的混合Filter方法对原始特征集合进行相关性评估并快速筛选重要特征,从而完成特征集合的一次预选。最后,引入改进灰狼优化算法对预选特征集合进行二次筛选,实现冗余特征去除的同时,完成对支持向量机模型参数的优化。利用旋转机械振动试验台获取故障轴承数据进行了验证,试验结果表明,该方法显著提高了分类器模型的诊断准确率,有效实现了故障数据集的特征降维,并且与同类方法相比,所提方法具有更好的综合性能。 展开更多
关键词 特征选择 RELIEFF算法 拉普拉斯分数 改进灰狼优化 故障诊断
下载PDF
基于时序特征选择与改进MSPCA算法的电网暂态稳定态势智能评估 被引量:10
3
作者 鲁广明 张璐路 +3 位作者 马晶 魏亚威 李宏强 杨慧彪 《电测与仪表》 北大核心 2023年第6期125-133,共9页
在充分利用电网海量历史运行数据及大量仿真分析数据评估暂态稳定态势过程中,恰当的选择与稳定特征以及提取非正常态势关键影响特征是实现电网暂态稳定态势评估的基础。文中提出了一种基于时序特征选择的暂态稳定态势智能评估方法。给... 在充分利用电网海量历史运行数据及大量仿真分析数据评估暂态稳定态势过程中,恰当的选择与稳定特征以及提取非正常态势关键影响特征是实现电网暂态稳定态势评估的基础。文中提出了一种基于时序特征选择的暂态稳定态势智能评估方法。给出了基于未来运行点的邻域样本在线生成方法及稳定态势等级描述,选择输电断面作为主要特征;基于时序邻域信息度量算法,依据累积贡献率对特征降序排列,并采用基于邻域互信息的计算并伴随基于SVM的特征子集搜索实现冗余特征的剔除,形成稳定特征子集;在应用电网稳定特征子集进行态势评估场景中,采用改进的多尺度主元分析法对稳定相关信息进行提取,通过特征贡献率排序实现非正常态势关键影响特征识别。结合IEEE 39节点算例系统,仿真结果验证了文中所提方法的有效性。 展开更多
关键词 电网暂态稳定态势评估 时序特征选择 邻域互信息 特征贡献率 改进MSPCA算法
下载PDF
顾及特征离散程度的SEaTH特征优化选择方法 被引量:1
4
作者 瞿伟 王宇豪 +2 位作者 王乐 李久元 李达 《测绘学报》 EI CSCD 北大核心 2024年第1期20-35,共16页
特征选择是面向对象信息提取的关键步骤之一。本文针对分离阈值(separability and threshold,SEaTH)这一特征选择方法在实际应用中存在的不足,例如未考虑特征值的离散程度,仅利用J-M距离评判单一特征,特征间可能存在较强相关性,以及无... 特征选择是面向对象信息提取的关键步骤之一。本文针对分离阈值(separability and threshold,SEaTH)这一特征选择方法在实际应用中存在的不足,例如未考虑特征值的离散程度,仅利用J-M距离评判单一特征,特征间可能存在较强相关性,以及无法有效确定出分类顺序,提出了一种改进的SEaTH算法(optimized SEaTH,OPSEaTH)。OPSEaTH算法首先在J-M距离基础上构建了一类特征评价指标(E值),有效解决了特征值的离散度问题;然后,基于E值构建出特征组合评价指标(C_(e)值),可有效评估得到每种地物的最佳特征组合并自动确定出地物的分类顺序;最后基于eCognition等分类器可完成对地物对象的最终有效分类。利用高分二号遥感影像数据对本文方法进行了测试,并将结果分别与SEaTH算法、DPC、OIF和最近邻分类器的分类结果进行了对比,结果表明:OPSEaTH算法不仅能有效降低特征维数、优化特征空间,还能够对分类顺序进行自动化合理确定,总体精度和Kappa系数及其他精度指标,均显著优于基于SEaTH算法的特征选择结果。本文方法无论从特征降维效果、分类结果精度还是计算效率方面均优于DPC、OIF和最近邻分类器结果。OPSEaTH是一种更优的特征选择方法。 展开更多
关键词 SEaTH算法 特征选择 离散系数 特征组合 分类顺序 改进SEaTH算法
下载PDF
基于特征选择及ISSA-CNN-BiGRU的短期风功率预测 被引量:2
5
作者 王瑞 徐新超 逯静 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第3期228-239,共12页
针对风电功率随机性大、平稳性低,以及直接输入预测模型往往难以取得较高精度等问题,提出了一种基于特征选择及改进麻雀搜索算法(ISSA)优化卷积神经网络-双向门控循环单元(CNN-BiGRU)的短期风电功率预测方法。首先,利用变分模态分解(VMD... 针对风电功率随机性大、平稳性低,以及直接输入预测模型往往难以取得较高精度等问题,提出了一种基于特征选择及改进麻雀搜索算法(ISSA)优化卷积神经网络-双向门控循环单元(CNN-BiGRU)的短期风电功率预测方法。首先,利用变分模态分解(VMD)将原始功率分解为一组包含不同信息的子分量,以降低原始功率序列的非平稳性,提升可预测性,同时通过观察中心频率方式确定模态分解数。其次,对每一分量采用随机森林(RF)特征重要度的方法进行特征选择,从风速、风向、温度、空气密度等气象特征因素中,选取对各个分量预测贡献度较高的影响因素组成输入特征向量。然后,建立各分量的CNN-BiGRU预测模型,针对神经网络算法参数难调、手动配置参数随机性大的问题,利用ISSA对模型超参数寻优,自适应搜寻最优参数组合。最后,叠加各分量的预测值,得到最终的预测结果。以中国内蒙古某风电场实际数据进行仿真实验,与多种单一及组合预测方法进行对比,结果表明,本文所提方法相比于其他方法具有更高的预测精度,其平均绝对百分比误差值达到2.644 0%;在其他4个数据集上进行的模型准确性及泛化性验证结果显示,模型平均绝对百分比误差值分别为4.385 3%、3.174 9%、1.576 1%和1.358 8%,均保持在5.000 0%以内,证明本文所提方法具有较好的预测精度及泛化能力。 展开更多
关键词 短期风功率预测 变分模态分解 特征选择 改进麻雀搜索算法 卷积神经网络 双向门控循环单元
下载PDF
基于改进TFIDF算法的文本特征选择和聚类分析
6
作者 赵军愉 柴小亮 +2 位作者 李士林 徐松晓 王强 《微型电脑应用》 2023年第10期181-183,187,共4页
为了提高大量文本数据的特征选择能力,采用全覆盖粒计算方法对特征选择算法的数据高维性与稀疏性进行分析。针对TFIDF算法存在的缺陷,设计了一种经过改进后的TFIDF_SP算法,以区分文档内处于不同部位的特征词重要性,并根据不同特征选择... 为了提高大量文本数据的特征选择能力,采用全覆盖粒计算方法对特征选择算法的数据高维性与稀疏性进行分析。针对TFIDF算法存在的缺陷,设计了一种经过改进后的TFIDF_SP算法,以区分文档内处于不同部位的特征词重要性,并根据不同特征选择方法对比结果判断算法有效性。研究结果表明,采用bLDA主题模型提取细主题粒度的时候也无法获得理想聚类效果,此时会对相同主题特征词造成弱化,将其判断为不同主题类型的特征词。在γ取值等于0.8时可以获得最优聚类效果,此时改进TFIDF算法能促进权重的进一步提升。所提出的改进TFIDF算法可以获得比TFIDF和bLDA主题模型更好的结果结合高1.62%的聚类准确率,表明当特征词方式词性与位置变化时会引起文档表达效果的显著影响。 展开更多
关键词 文本特征选择 改进TFIDF算法 聚类效果 主题模型
下载PDF
基于改进遗传算法的棉花异性纤维目标特征选择 被引量:13
7
作者 杨文柱 李道亮 +2 位作者 魏新华 康玉国 李付堂 《农业机械学报》 EI CAS CSCD 北大核心 2010年第4期173-178,共6页
为提高基于机器视觉的棉花异性纤维在线分类的精度和速度,提出了一种基于改进遗传算法的特征选择方法。采用分段式染色体管理方案实现对多质特征空间局部化管理;利用分段交叉和变异算子避免出现无效染色体,提高搜索效率;通过自适应调整... 为提高基于机器视觉的棉花异性纤维在线分类的精度和速度,提出了一种基于改进遗传算法的特征选择方法。采用分段式染色体管理方案实现对多质特征空间局部化管理;利用分段交叉和变异算子避免出现无效染色体,提高搜索效率;通过自适应调整交叉和变异概率实现强搜索能力和快收敛速度的动态平衡。实验结果表明,该方法比基本遗传算法搜索能力更强、收敛速度更快,所得最优特征子集较小,更适用于棉花异性纤维在线分类。 展开更多
关键词 棉花 异性纤维 特征选择 改进遗传算法
下载PDF
改进YOLOv7算法的排水管道缺陷检测与几何表征
8
作者 曾飞 李斌 +1 位作者 周健 樊江峰 《现代制造工程》 CSCD 北大核心 2024年第3期110-118,共9页
定期检查排水管道可以及时发现严重缺陷,对保证排水系统健康运行和城市环境安全具有重要意义。针对排水管道低照度和低分辨率检测困难现状,提出一种改进YOLOv7算法的排水管道缺陷检测与几何表征方法。首先,利用对比度受限自适应直方图... 定期检查排水管道可以及时发现严重缺陷,对保证排水系统健康运行和城市环境安全具有重要意义。针对排水管道低照度和低分辨率检测困难现状,提出一种改进YOLOv7算法的排水管道缺陷检测与几何表征方法。首先,利用对比度受限自适应直方图均衡化图像增强技术,改善图像的对比度和细节,以提高检测网络对排水管道缺陷的捕获能力;其次,基于设计的Drop-CA和MC模块改进YOLOv7算法,使网络获得浅层缺陷的语义信息并降低误检率,提高模型的分类和定位能力;最后,针对裂缝和断裂2种严重缺陷,设计了一种定量描述该缺陷的几何特征方法来评估缺陷的大小。实验结果表明,改进的网络模型最终平均精度达到93.3%,检测速度达到42.9 f/s。该方法有效提升排水管道缺陷检测和分类精度,且可以有效表征缺陷的几何特征。 展开更多
关键词 图像增强 缺陷检测 改进的YOLOv7算法 Drop-CA 几何特征
下载PDF
离散型增强烟花算法和kNN在特征选择中的研究 被引量:4
9
作者 黄欣 莫海淼 +1 位作者 赵志刚 曾敏 《计算机工程与应用》 CSCD 北大核心 2020年第16期112-117,共6页
特征选择是从原始特征集中选取特征子集,并且降低特征维度和减少冗余信息,从而达到提高分类准确度的效果。为了达到此效果,提出了新的特征选择算法。该算法使用经过离散化处理之后的增强烟花算法来搜索特征子集,同时将特征子集和经过惩... 特征选择是从原始特征集中选取特征子集,并且降低特征维度和减少冗余信息,从而达到提高分类准确度的效果。为了达到此效果,提出了新的特征选择算法。该算法使用经过离散化处理之后的增强烟花算法来搜索特征子集,同时将特征子集和经过惩罚因子处理之后约束条件融入到目标函数中,然后将搜索到的特征子集的数据放到kNN分类器进行训练和预测,最后使用十折交叉验证来检验分类的准确性。使用UCI数据进行仿真实验,仿真结果表明:与引导型烟花算法、烟花算法、蝙蝠算法、乌鸦算法、自适应粒子群算法相比,所提算法的总体性能优于其他五种算法。 展开更多
关键词 离散型增强烟花算法 特征选择 降维 分类 k近邻(kNN)
下载PDF
基于改进遗传算法的转炉炼钢过程数据特征选择 被引量:17
10
作者 刘辉 曾鹏飞 +1 位作者 巫乔顺 陈甫刚 《仪器仪表学报》 EI CAS CSCD 北大核心 2019年第12期185-195,共11页
转炉炼钢生产过程数据特征选择是实现终点碳温预报的关键,针对生产过程高维数据不利于快速精确预测终点碳温的问题,提出一种改进遗传算法的转炉炼钢生产过程数据特征选择方法。首先采用皮尔逊相关系数衡量不同特征的重要贡献度,进而构... 转炉炼钢生产过程数据特征选择是实现终点碳温预报的关键,针对生产过程高维数据不利于快速精确预测终点碳温的问题,提出一种改进遗传算法的转炉炼钢生产过程数据特征选择方法。首先采用皮尔逊相关系数衡量不同特征的重要贡献度,进而构造反映过程数据特征与终点碳温相关性的目标函数;然后通过目标函数定义了种群的最大、最小、平均适应度和随机个体适应度值4个变量,建立了一种自适应调节交叉变异概率机制,使得迭代寻优时种群分布更加合理的同时又提高了算法后期收敛速度,防止陷入局部最优。最后进行实际钢厂生产过程数据特征选择验证和对比实验,结果表明,特征选择平均用时为0.25 s,用于终点预报中温度误差在±5℃的精度为85.67%,碳含量预测误差在±0.01%的精度为80.67%。 展开更多
关键词 转炉炼钢 特征选择 碳温预测 改进遗传算法
下载PDF
基于mRMR-IPSO的短期负荷预测双阶段特征选择
11
作者 焦龄霄 周凯 +4 位作者 张子熙 韩飞 时伟君 洪叶 罗朝丰 《重庆大学学报》 CAS CSCD 北大核心 2024年第5期98-109,共12页
电力负荷具有时空多变的特性,受众多因素的影响,在短期负荷预测中较多的输入特征会造成维度灾难,导致模型预测性能不佳,因此选择合理的输入特征集至关重要。文章提出一种新的短期负荷预测特征选择方法——mRMR-IPSO双阶段法。利用最大... 电力负荷具有时空多变的特性,受众多因素的影响,在短期负荷预测中较多的输入特征会造成维度灾难,导致模型预测性能不佳,因此选择合理的输入特征集至关重要。文章提出一种新的短期负荷预测特征选择方法——mRMR-IPSO双阶段法。利用最大相关最小冗余(maxrelevance and min-redundancy,mRMR)判据对原始特征进行排序,考虑输入特征与输出特征之间相关性和输入特征间冗余性,筛选掉一些排序靠后的特征,初选出对预测效果影响显著的特征子集;采用基于改进的粒子群优化算法(improved particle swarm optimization,IPSO)的搜索策略,以LightGBM模型的预测精度为适应度函数,对初选特征子集进行精选,得到最优特征子集。算例结果表明,所提方法能在对原始特征集大幅降维的情况下提升预测精度。 展开更多
关键词 特征选择 负荷预测 最大相关最小冗余 改进的粒子群优化算法 LightGBM
下载PDF
用于特征选择的改进二进制蝙蝠算法
12
作者 李占山 沈琳睿 +1 位作者 阮锟 杨鑫凯 《长春工业大学学报》 CAS 2022年第2期128-136,共9页
二进制蝙蝠算法(BBA)是模仿蝙蝠狩猎行为的一种启发式特征选择算法,具有收敛快、模型简单、鲁棒性好的特点。但算法容易出现停滞问题,易陷入局部最优。为此,文中提出了改进的二进制蝙蝠算法(ABBA)。利用种群熵进行传递函数的改进,使得... 二进制蝙蝠算法(BBA)是模仿蝙蝠狩猎行为的一种启发式特征选择算法,具有收敛快、模型简单、鲁棒性好的特点。但算法容易出现停滞问题,易陷入局部最优。为此,文中提出了改进的二进制蝙蝠算法(ABBA)。利用种群熵进行传递函数的改进,使得传递函数在适应算法收敛过程的同时赋予算法跳出停滞的能力。其次,加入辅助改进,用于保持算法的收敛性,加速收敛。最后,采用K近邻分类器在22个UCI数据集上进行了与6个较新特征选择算法的对比实验,各项实验结果表明,ABBA的分类准确率和可靠性相比,BA算法均有明显提高,并且在大部分数据集上优于6个其他特征选择算法。ABBA是一种有竞争力的特征选择算法,可以作为机器学习、数据挖掘等领域的有效数据预处理手段。 展开更多
关键词 特征选择 进化计算 蝙蝠算法改进
下载PDF
特征分层结合改进粒子群算法的近红外光谱特征选择方法研究 被引量:10
13
作者 徐宝鼎 秦玉华 +2 位作者 杨宁 高锐 苑程程 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2019年第3期717-722,共6页
在近红外光谱数据定量建模中,数据的高冗余和高噪严重影响了建模的稳健性和精确性,因此提出了一种特征分层结合改进粒子群算法(PSO)的特征光谱选择方法。首先通过互信息度量特征的重要性得分,并按特征的重要性降序排序,有效避免了因采... 在近红外光谱数据定量建模中,数据的高冗余和高噪严重影响了建模的稳健性和精确性,因此提出了一种特征分层结合改进粒子群算法(PSO)的特征光谱选择方法。首先通过互信息度量特征的重要性得分,并按特征的重要性降序排序,有效避免了因采用降维方法得到主成分而引起的丢失重要信息的问题。其次,引入了跳跃度概念,并构造了一种特征分层的方法,重要性程度相似的特征并入同一个特征子集,将降序排列的特征集分割为不同的特征子集,避免了筛选特征过程中因人为设定特征重要性得分阈值而导致的不确定性。最后,采用收敛速度快、控制参数少的粒子群算法作为最优特征子集的优化方法,同时对粒子群算法做了两方面改进:引入混沌模型增加种群的多样性,提高了PSO的全局搜索能力,避免陷入局部最优;将特征数目引入到适应度函数中,在迭代前期通过惩罚因子调节特征数目对适应度函数的影响,提高了算法的适应能力。将分层后的数据以特征子集为单位,依次累加并作为改进粒子群算法的输入,从而选择出高辨别力的特征子集。以烟碱指标为例进行了特征选择过程的描述,实验采用尼高力公司的AntarisⅡ近红外光谱仪进行近红外光谱数据的采集,光谱扫描范围为4 000~10 000 cm^(-1)。首先,利用互信息理论计算全光谱1 557个特征对待测指标定量建模的重要性得分,得分取30次实验的均值。其次,将所有特征按照重要性得分降序排序,计算所有特征的跳跃度,依据跳跃度寻找特征分层的临界点,将特征划分到不同的特征层中,构建了包含8个特征子集的特征集合S={S′_1,S′_2,S′_3,S′_4,S′_5,S′_6,S′_7,S′_8}。然后,依次将特征子集S′_1,{S′_1,S′_2},{S′_1,S′_2,S′_3},…,{S′_1,S′_2,S′_3,S′_4,S′_5,S′_6,S′_7,S′_8}作为初始粒子群的候选集,以R/(1+RMSEP)作为特征子集优劣的评价标准,各自重复实验50次,比值最大的特征子集即为最优特征子集。为验证该算法的有效性,选取了具有代表性烟叶近红外光谱数据作为训练集和测试集,建立了烟碱、总糖两个指标的PLS定量模型,并分别与全光谱、分层后的特征光谱、粒子群算法选出的特征光谱进行了比较。仿真结果表明,本算法所选特征烟碱、总糖的建模相关系数r分别为0.988 5和0.982 2,交互验证均方差RMSECV分别为0.098 4和0.889 3,预测均方根误差RMSEP分别为0.100 7和0.901 6,模型准确率均明显高于其他三种方法。从所选特征数来看,该算法所选特征数最少,有效剔除了原特征集中的弱相关和噪声、冗余信息,所建模型的主因子数最少,降低了模型的复杂性,模型更加稳健,适应性更广。 展开更多
关键词 特征选择 特征分层 跳跃度 改进粒子群算法 近红外光谱
下载PDF
基于改进人工蜂群算法的大数据特征选择方法
14
作者 李玮瑶 《河南科技》 2021年第19期27-29,共3页
数据特征选择就是从初始的数据特征中选择指定数据进行子集筛选。目前,通常使用人工蜂群算法进行特征选择,但由于收敛慢、寻优差,无法满足人们的需求。因此,本文提出一种改进人工蜂群算法,通过特征选择绘制大数据特征选择框架图,建立多... 数据特征选择就是从初始的数据特征中选择指定数据进行子集筛选。目前,通常使用人工蜂群算法进行特征选择,但由于收敛慢、寻优差,无法满足人们的需求。因此,本文提出一种改进人工蜂群算法,通过特征选择绘制大数据特征选择框架图,建立多项搜索渠道;利用改进的人工蜂群算法提取并行特征,使用MapReduce模型降低编程难度,获取并行特征最优解;设计特征选择复杂粗糙集模型,并构建特征学习模型来实现大数据特征选择。试验结果表明,设计的特征选择方法性能优于传统方法。 展开更多
关键词 改进人工蜂群算法 大数据 特征选择
下载PDF
基于粗糙集和改进鲸鱼优化算法的特征选择方法 被引量:21
15
作者 王生武 陈红梅 《计算机科学》 CSCD 北大核心 2020年第2期44-50,共7页
随着互联网和物联网技术的发展,数据的收集变得越发容易。但是,高维数据中包含了很多冗余和不相关的特征,直接使用会徒增模型的计算量,甚至会降低模型的表现性能,故很有必要对高维数据进行降维处理。特征选择可以通过减少特征维度来降... 随着互联网和物联网技术的发展,数据的收集变得越发容易。但是,高维数据中包含了很多冗余和不相关的特征,直接使用会徒增模型的计算量,甚至会降低模型的表现性能,故很有必要对高维数据进行降维处理。特征选择可以通过减少特征维度来降低计算开销和去除冗余特征,以提高机器学习模型的性能,并保留了数据的原始特征,具有良好的可解释性。特征选择已经成为机器学习领域中重要的数据预处理步骤之一。粗糙集理论是一种可用于特征选择的有效方法,它可以通过去除冗余信息来保留原始特征的特性。然而,由于计算所有的特征子集组合的开销较大,传统的基于粗糙集的特征选择方法很难找到全局最优的特征子集。针对上述问题,文中提出了一种基于粗糙集和改进鲸鱼优化算法的特征选择方法。为避免鲸鱼算法陷入局部优化,文中提出了种群优化和扰动策略的改进鲸鱼算法。该算法首先随机初始化一系列特征子集,然后用基于粗糙集属性依赖度的目标函数来评价各子集的优劣,最后使用改进鲸鱼优化算法,通过不断迭代找到可接受的近似最优特征子集。在UCI数据集上的实验结果表明,当以支持向量机为评价所用的分类器时,文中提出的算法能找到具有较少信息损失的特征子集,且具有较高的分类精度。因此,所提算法在特征选择方面具有一定的优势。 展开更多
关键词 特征选择 粗糙集理论 改进鲸鱼优化算法 属性依赖度 最优特征子集
下载PDF
一种基于最小分类错误率的改进型LDA特征选择算法 被引量:6
16
作者 张振平 宣国荣 +1 位作者 郑俊翔 柴佩琪 《微型电脑应用》 2005年第4期4-6,38,共4页
LDA是目前常用的较好的特征选择方法。然而散布矩阵不同时,LDA分类效果往往不理想。本文提出一种基于分类错误率最小的改进型LDA特征选择算法,采用迭代计算使Bayes分类错误率上界最小,能取得比原LDA更好的分类效果。对高维数据提出基于... LDA是目前常用的较好的特征选择方法。然而散布矩阵不同时,LDA分类效果往往不理想。本文提出一种基于分类错误率最小的改进型LDA特征选择算法,采用迭代计算使Bayes分类错误率上界最小,能取得比原LDA更好的分类效果。对高维数据提出基于PCA预处理的“快速改进型LDA特征选择”减少求解迭代计算时间。针对Marill.T.提供的典型数据和MINIST手写体数字库的实验证实以上论点是正确的。 展开更多
关键词 选择算法 LDA 改进 错误率 最小 特征选择 分类效果 BAYES 迭代计算 计算时间 高维数据 预处理 PCA 数字库 手写体
下载PDF
基于多策略改进蝙蝠算法的文本特征选择
17
作者 侯乔 陈宏伟 《湖北工业大学学报》 2019年第5期64-66,71,共4页
特征选择是文本分类过程的重要处理步骤,在其他分类预处理环节和分类算法确定的条件下,通过传统特征选择方法很难大幅度提高文本分类的准确率。针对此问题,介绍了一个基于改进蝙蝠优化的新的文本特征选择方法,即利用传统的特征选择方法... 特征选择是文本分类过程的重要处理步骤,在其他分类预处理环节和分类算法确定的条件下,通过传统特征选择方法很难大幅度提高文本分类的准确率。针对此问题,介绍了一个基于改进蝙蝠优化的新的文本特征选择方法,即利用传统的特征选择方法对原始特征进行预选,在此基础上使用高斯局部扰动和自适应调节权重机制改进传统蝙蝠群算法,并以二进制编码形式对预选特征进行优选,分类准确率作为个体的适应度,提出了多策略改进蝙蝠算法的文本特征选择算法MS-BA,实现对文本特征选择优化模型的高效求解。结果表明,采用MS-BA进行特征优选后,其分类准确率得到有效提高。 展开更多
关键词 特征选择 蝙蝠算法 文本分类 多策略改进
下载PDF
彩色图像中文本内容的选择性增强算法研究 被引量:3
18
作者 薛宏伟 韩慧莲 《计算机与数字工程》 2009年第4期124-126,168,共4页
探讨了视频图像的插值缩放,并针对彩色图像中的文本内容采用改进的Niblack二值化算法进行有选择性增强。改进的Niblack算法增加了多个控制参数协同工作,在保证彩色图像整体视觉效果不变的前提下,对文本内容进行选择性增强,并提高了运算... 探讨了视频图像的插值缩放,并针对彩色图像中的文本内容采用改进的Niblack二值化算法进行有选择性增强。改进的Niblack算法增加了多个控制参数协同工作,在保证彩色图像整体视觉效果不变的前提下,对文本内容进行选择性增强,并提高了运算效率。 展开更多
关键词 彩色图像 文本 缩放 选择增强 改进的Niblack算法
下载PDF
面向Android恶意应用静态检测的特征频数差异增强算法
19
作者 李向军 孔珂 +2 位作者 魏智翔 王科选 肖聚鑫 《计算机工程与科学》 CSCD 北大核心 2020年第6期993-1002,共10页
随着Android应用程序数量的快速增长,面向Android应用程序的安全性检测已成为网络安全领域的热点研究问题之一。针对恶意应用静态检测的特征选择,给出了良性特征、恶意特征、良性典型特征、恶意典型特征、非典型特征等概念,设计提出了... 随着Android应用程序数量的快速增长,面向Android应用程序的安全性检测已成为网络安全领域的热点研究问题之一。针对恶意应用静态检测的特征选择,给出了良性特征、恶意特征、良性典型特征、恶意典型特征、非典型特征等概念,设计提出了特征频数差异增强算法FDE。FDE算法通过计算特征出现在良性与恶意应用中的频数,去除静态特征中的非典型特征。为合理验证算法的目标效果和性能优劣,分别设计了基于平衡数据与非平衡数据的实验,对于非平衡数据,引入了权重损失函数。实验结果表明,FDE算法可有效去除静态特征中的非典型特征,筛选出有效特征,权重损失函数可有效提高非平衡数据中的恶意数据识别率。 展开更多
关键词 特征频数差异增强算法 权重损失函数 特征选择 非典型特征 恶意应用
下载PDF
基于改进RF特征选择策略的烤烟油分高光谱特征分析 被引量:4
20
作者 叶磊 韦克苏 +2 位作者 李德仑 张富贵 吴雪梅 《中国农机化学报》 北大核心 2021年第8期196-202,共7页
针对烤烟油分特征预测模型的特征优选问题,提出一种改进RF(随机森林)算法特征选择策略,首先通过RF特征选择算法计算出各个特征的RF-Score,将特征按RF-Score的大小排序依次添加到特征子集中,若分类器分类准确率提高则保留该特征,若分类... 针对烤烟油分特征预测模型的特征优选问题,提出一种改进RF(随机森林)算法特征选择策略,首先通过RF特征选择算法计算出各个特征的RF-Score,将特征按RF-Score的大小排序依次添加到特征子集中,若分类器分类准确率提高则保留该特征,若分类器分类准确率没有提高或降低则去除该特征。结果表明:利用RF特征选择算法对烤烟高光谱特征进行筛选时,将176个高光谱特征中按基尼系数降序排列依次输入SVM分类器中,前64个高光谱波段特征即可使支持向量机分类器性能最佳,特征子集维度为64,其分类准确率为93.33%。利用改进RF特征选择策略对176个烤烟高光谱波段特征进行筛选,只需输入371.08 nm、716.71 nm、378.31 nm、487.77 nm、484.09 nm、535.85 nm六个波段的高光谱特征即可使支持向量机分类器性能最佳,其分类准确率为95%,特征子集维度为6,说明改进的RF特征选择策略可以在保证分类器性能的前提下能较好地进行数据降维,减小特征集的冗余。改进后的RF特征选择算法与全高光谱波段相比,特征数量减少170个,分类准确率提高3.33%;与RF特征选择算法相比,特征数量减少58个,分类准确率提高1.67%。 展开更多
关键词 改进RF算法 特征选择 烤烟 油分特征 高光谱
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部