期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于样本熵和优化极限学习机的PM_(2.5)浓度预测 被引量:11
1
作者 蒋锋 乔雅倩 《统计与决策》 CSSCI 北大核心 2021年第3期166-171,共6页
PM2.5作为评估空气质量的重要指标,准确预测PM2.5浓度对大气污染的监测和控制有重要意义。文章提出了一种基于样本熵(sample entropy,SE)和改进的探路者算法(improved pathfinder algorithm,IPFA)优化极限学习机的集成学习方法。首先利... PM2.5作为评估空气质量的重要指标,准确预测PM2.5浓度对大气污染的监测和控制有重要意义。文章提出了一种基于样本熵(sample entropy,SE)和改进的探路者算法(improved pathfinder algorithm,IPFA)优化极限学习机的集成学习方法。首先利用变分模态分解(variational mode decomposition,VMD)算法将原始PM2.5浓度序列分解为不同频率的有限带宽本征模态函数(bandlimited intrinsic mode function,BIMF),并引入样本熵对相似的BIMF进行重构。然后改进探路者算法(pathfinder algorithm,PFA),在成员位置更新过程中融入交叉、变异和贪婪选择策略,提升PFA算法的全局搜索能力,再采用改进的探路者算法(IPFA)优化极限学习机(extreme learning machine,ELM),最后利用IPFA优化的极限学习机对每个重构子序列进行预测和集成。为了检验VMD-SE-IELM模型的有效性,以武汉市PM2.5浓度数据为研究对象进行了逐时预测,实证结果表明,提出的集成学习模型的预测精度和稳健性均显著优于其他基准模型。 展开更多
关键词 样本熵 PM2.5浓度 极限学习机 改进的探路者算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部