期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
改进的时间相关序列股票价格混合预测模型研究 被引量:1
1
作者 王晓红 王梦瑶 郝婷 《科技促进发展》 CSCD 2020年第6期672-678,共7页
金融股票市场是一个极其复杂的演化系统,因此对股价波动进行准确预测是投资者理性规避投资风险的重要渠道。本文首先通过构建科学性较强的自回归移动平均与支持向量机(ARIMASVM)模型分析一维金融时序数据的线性成分,对我国股价波动进行... 金融股票市场是一个极其复杂的演化系统,因此对股价波动进行准确预测是投资者理性规避投资风险的重要渠道。本文首先通过构建科学性较强的自回归移动平均与支持向量机(ARIMASVM)模型分析一维金融时序数据的线性成分,对我国股价波动进行样本内预测并与真实数据作比较,再利用改进的支持向量机(TGDSVM)模型基于金融面板时序数据处理线性预测后剩余的非线性成分信息。采用平均绝对误差(MAE)、均方根误差(RMSE)、平均绝对比例误差(MAPE)、回归指数(WIA)、百分标准误差(SEP)与Nash系数六个预测精度指标检验五只股票日收盘价的预测精度。仿真结果表明:改进的时间相关序列(ARIMA—TGD—SVM)股票价格混合预测模型可以很好的弥补传统支持向量机(SVM)模型对解决多分类问题存在困难和对大规模训练样本难以实施的不足,并有效解决其利用欧式距离表征时序数据内部真实相互关系不足的缺陷,能够为股市预测提供理论依据和实际应用奠定基础。 展开更多
关键词 改进的时间相关序列 金融时间序列 股票价格预测 混合预测模型
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部