期刊文献+
共找到2,717篇文章
< 1 2 136 >
每页显示 20 50 100
基于减法聚类与改进的模糊C-均值聚类算法的说话人识别方法的研究 被引量:7
1
作者 崔连延 徐林 +1 位作者 顾树生 曹洪奎 《信息与控制》 CSCD 北大核心 2008年第3期358-361,共4页
提出一种将减法聚类与改进的模糊C-均值聚类相结合并用于说话人识别的方法.该方法将从语音信号中提取的Mel频率倒谱系数及其差分作为特征参数;用减法聚类算法初始化聚类中心,再用改进的模糊C-均值聚类算法进行修正,形成码本.识别时,对... 提出一种将减法聚类与改进的模糊C-均值聚类相结合并用于说话人识别的方法.该方法将从语音信号中提取的Mel频率倒谱系数及其差分作为特征参数;用减法聚类算法初始化聚类中心,再用改进的模糊C-均值聚类算法进行修正,形成码本.识别时,对每一个待识别语音进行模糊聚类识别.仿真结果表明,该方法比改进的模糊C-均值聚类算法识别率高,具有较好的鲁棒性,且计算比较简单. 展开更多
关键词 说话人识别 减法 改进的模糊c-均值聚类
下载PDF
改进的模糊C-均值聚类方法 被引量:12
2
作者 牛强 夏士雄 +1 位作者 周勇 张磊 《电子科技大学学报》 EI CAS CSCD 北大核心 2007年第6期1257-1259,1272,共4页
该文针对模糊C-均值算法容易收敛于局部极小点的缺陷,将遗传算法应用于模糊C-均值算法(FCM)的优化计算中,其中对传统遗传算法的编码方案、遗传算子约束条件及适应值函数等方面进行改进,提出了一种基于改进遗传算法的模糊聚类方法。实验... 该文针对模糊C-均值算法容易收敛于局部极小点的缺陷,将遗传算法应用于模糊C-均值算法(FCM)的优化计算中,其中对传统遗传算法的编码方案、遗传算子约束条件及适应值函数等方面进行改进,提出了一种基于改进遗传算法的模糊聚类方法。实验表明,将改进的遗传算法与FCM算法结合起来进行聚类分析,可以在一定程度上避免FCM算法对初始值敏感和容易陷入局部最优解的缺陷,使聚类更合理,比单一使用FCM算法进行聚类分析的效果要好。 展开更多
关键词 C均值算法 模糊 遗传算法 优化计算
下载PDF
改进的模糊C-均值聚类算法 被引量:24
3
作者 关庆 邓赵红 王士同 《计算机工程与应用》 CSCD 北大核心 2011年第10期27-29,88,共4页
为了克服模糊C-均值(FCM)聚类算法易陷入局部极小值和对初始值敏感的缺点,提出了一种基于改进量子蚁群的模糊聚类算法。将量子计算原理和蚁群算法相结合来改进FCM算法。初期采用量子遗传算法生成信息素分布,后期利用蚁群算法的全局搜索... 为了克服模糊C-均值(FCM)聚类算法易陷入局部极小值和对初始值敏感的缺点,提出了一种基于改进量子蚁群的模糊聚类算法。将量子计算原理和蚁群算法相结合来改进FCM算法。初期采用量子遗传算法生成信息素分布,后期利用蚁群算法的全局搜索性、并行计算性等特点避免聚类陷入局部最优解。实验证明该算法保证了种群的多样性,有较好的全局收敛性,克服了模糊C-均值聚类算法的不足,能有效解决未成熟收敛的问题,使聚类问题最终快速、有效地收敛到全局最优解。 展开更多
关键词 分析 模糊c-均值 蚁群算法 量子计算
下载PDF
改进的模糊C-均值聚类算法研究 被引量:41
4
作者 齐淼 张化祥 《计算机工程与应用》 CSCD 北大核心 2009年第20期133-135,共3页
为解决模糊C-均值(FCM)聚类算法对噪声和孤立点数据敏感、样本分布不均衡的问题,提出了具体的改进和提高的方法:改进隶属度函数,以消除孤立点对聚类结果的影响;为每个样本点赋予一个定量的权值,以区分不同的样本点对于知识发现的不同作... 为解决模糊C-均值(FCM)聚类算法对噪声和孤立点数据敏感、样本分布不均衡的问题,提出了具体的改进和提高的方法:改进隶属度函数,以消除孤立点对聚类结果的影响;为每个样本点赋予一个定量的权值,以区分不同的样本点对于知识发现的不同作用,改善噪音和分布不均衡的样本集的聚类结果。实验结果表明该算法具有更好的健壮性和聚类效果。 展开更多
关键词 模糊c-均值 权值
下载PDF
一种改进的模糊C-均值聚类算法 被引量:8
5
作者 曹易 张宁 《上海理工大学学报》 CAS 北大核心 2012年第4期351-354,共4页
由于现有模糊C-均值聚类算法固有的局限性,本文提出了一种改进的模糊C-均值聚类算法.首先用概率密度函数来确定初始聚类中心点和聚类数,其次用竞争学习思想提出使对手增加抑制因子来修改隶属度得到加快收敛速度的效果,最后提出用一个类... 由于现有模糊C-均值聚类算法固有的局限性,本文提出了一种改进的模糊C-均值聚类算法.首先用概率密度函数来确定初始聚类中心点和聚类数,其次用竞争学习思想提出使对手增加抑制因子来修改隶属度得到加快收敛速度的效果,最后提出用一个类内差异与类间差异兼备的新的有效性指标来作为迭代条件的目标函数.通过实验获取参数的最优取值范围,通过与经典模糊C-均值聚类算法的比较,证明了该改进算法不仅加快了收敛速度,而且在聚类结果的质量上有一定程度的提高. 展开更多
关键词 模糊c-均值 概率密度 隶属度 有效性指标
下载PDF
基于改进的模糊c-均值聚类算法的负荷特性指标分析与分类 被引量:3
6
作者 李文华 贾玉雯 范新涛 《燕山大学学报》 CAS 北大核心 2016年第3期230-235,共6页
负荷侧管理是利用不同特性负荷作为需求响应资源,对具有多样性和复杂性的负荷种类进行较高精度的分类,提高负荷曲线的相似度,便于组合优化。为了对实际负荷更加精确地分类,提出一种基于改进的模糊c-均值聚类算法的负荷特性指标分类方法... 负荷侧管理是利用不同特性负荷作为需求响应资源,对具有多样性和复杂性的负荷种类进行较高精度的分类,提高负荷曲线的相似度,便于组合优化。为了对实际负荷更加精确地分类,提出一种基于改进的模糊c-均值聚类算法的负荷特性指标分类方法。该算法在聚类分割迭代中采用加权欧氏距离,对每种聚类中心进行负荷特性指标分析,并对各类别中的负荷采用不同控制方法。最后分类结果表明,所提方法使各分类中负荷具有较高相似性,为后续负荷的预测和控制奠定了基础。 展开更多
关键词 负荷分 模糊c-均值算法 加权欧氏距离 负荷特性指标
下载PDF
一种改进的模糊C-均值聚类算法在说话人识别中的应用 被引量:4
7
作者 杨彦 赵力 《电声技术》 2006年第1期40-43,共4页
提出了一种将改进的FCM聚类算法与矢量量化相结合的说话人识别的方法。先从语音信号中提取待识别的特征矢量集,再利用矢量量化来设计码本,最后用改进的算法对待识别语音进行辩识。该算法解决了FCM算法对初始值敏感、易陷入局部最优的问... 提出了一种将改进的FCM聚类算法与矢量量化相结合的说话人识别的方法。先从语音信号中提取待识别的特征矢量集,再利用矢量量化来设计码本,最后用改进的算法对待识别语音进行辩识。该算法解决了FCM算法对初始值敏感、易陷入局部最优的问题。所使用的特征参数较少,计算比较简单,但识别率较高,且具有较好的鲁棒性。 展开更多
关键词 模糊C均值 矢量量化 说话人识别
下载PDF
一种改进的模糊C-均值聚类算法 被引量:5
8
作者 李柏年 《计算机应用与软件》 CSCD 北大核心 2008年第6期98-99,共2页
模糊C-均值聚类是一种经典的聚类方法。针对模糊C-均值算法对初始值敏感、收敛结果易陷入局部极小的问题,通过对原始数据的预处理,将欧氏距离推广到广义欧氏距离,得到了加权模糊C-均值聚类的迭代公式,实证分析表明改进后的方法得到的分... 模糊C-均值聚类是一种经典的聚类方法。针对模糊C-均值算法对初始值敏感、收敛结果易陷入局部极小的问题,通过对原始数据的预处理,将欧氏距离推广到广义欧氏距离,得到了加权模糊C-均值聚类的迭代公式,实证分析表明改进后的方法得到的分类结果与嵌入遗传算法的分类基本一致,而且通过非参数检验证实分类效果良好。 展开更多
关键词 模糊c-均值 遗传算法 非参数检验
下载PDF
改进的模糊C-均值聚类算法在气测资料解释中的应用 被引量:2
9
作者 薛磊 白康生 程起才 《石油矿场机械》 2008年第4期62-65,共4页
提出了一种用于气测资料解释的改进的模糊C-均值算法。首先,基于气测资料构造适当的综合指标得到样本数据集;其次,根据最大最小距离算法的思想对样本数据集进行粗聚类,再利用粗聚类得到的聚类中心为初始聚类中心,执行标准模糊C-均值算法... 提出了一种用于气测资料解释的改进的模糊C-均值算法。首先,基于气测资料构造适当的综合指标得到样本数据集;其次,根据最大最小距离算法的思想对样本数据集进行粗聚类,再利用粗聚类得到的聚类中心为初始聚类中心,执行标准模糊C-均值算法,得到各类储层的标准模式;最后,按照最小距离原则对待判别储层进行分类。结果表明,该方法简单、准确率较高、稳定性好,优于标准的FCM算法。 展开更多
关键词 气测 模糊 模糊c-均值算法
下载PDF
基于改进的模糊C-均值聚类的信任文摘 被引量:2
10
作者 张泉 曾国荪 +2 位作者 王伟 孙明军 谷华楠 《计算机研究与发展》 EI CSCD 北大核心 2008年第z1期268-273,共6页
信息时代的到来和互联网的发展,使信息文本呈爆炸趋势生成和传播,虚假信息的大量存在,给人们高效地获取可信的、安全的信息带来了相当的困难.如何对互联网上的信息文本进行信任评估,是内容信任和网络安全急待解决的问题.借鉴传统的自动... 信息时代的到来和互联网的发展,使信息文本呈爆炸趋势生成和传播,虚假信息的大量存在,给人们高效地获取可信的、安全的信息带来了相当的困难.如何对互联网上的信息文本进行信任评估,是内容信任和网络安全急待解决的问题.借鉴传统的自动摘要技术,首先提出了信任文摘的概念,在文本的词、句子、篇章等各个层面上发掘信任信息,改进自动分词方法,选取信任中心句并运用改进的模糊C均值聚类算法对其聚类,然后为信任中心句选择信任支撑句,最后生成了信任文摘,为基于内容的信任评估提供了一个较好的手段. 展开更多
关键词 信任文摘 内容信任 模糊c-均值 自动文摘
下载PDF
基于改进的模糊C-均值聚类算法的接线箱分配设计与应用 被引量:2
11
作者 刘迪成 王建 王敏昊 《化工自动化及仪表》 CAS 2016年第9期962-965,共4页
为了解决工程设计中接线箱分配最优化的问题,通过分析和比较各种聚类方法,对模糊C-均值聚类算法进行改进和参数设置,通过初始化、迭代、解模糊及分裂等步骤,实现了接线箱的自动分配功能。并设计了一种基于改进的模糊C-均值聚类算法的接... 为了解决工程设计中接线箱分配最优化的问题,通过分析和比较各种聚类方法,对模糊C-均值聚类算法进行改进和参数设置,通过初始化、迭代、解模糊及分裂等步骤,实现了接线箱的自动分配功能。并设计了一种基于改进的模糊C-均值聚类算法的接线箱分配辅助软件,可以根据不同要求自动分配接线箱的功能,给出了软件流程,分析了实验结果,并在某设计院项目接线箱的实际布置中成功应用。 展开更多
关键词 模糊c-均值 接线箱自动分配 模糊 软件流程
下载PDF
基于改进模糊C-均值聚类的陆上风电场集电线路回路划分与拓扑结构优化
12
作者 易海 吕宙安 +5 位作者 张伶俐 陈希 柳典 黄雨薇 韩星星 许昌 《发电技术》 CSCD 2024年第4期675-683,共9页
【目的】在“双碳”目标以及我国能源结构加速转型的双重驱动下,风电产业规模不断快速增长,亟须降本增效以应对平价上网压力。集电线路的造价在投资中占比较大,存在可观的优化空间。为了降低投资成本,提出了一种改进模糊C-均值(fuzzy C-... 【目的】在“双碳”目标以及我国能源结构加速转型的双重驱动下,风电产业规模不断快速增长,亟须降本增效以应对平价上网压力。集电线路的造价在投资中占比较大,存在可观的优化空间。为了降低投资成本,提出了一种改进模糊C-均值(fuzzy C-means,FCM)聚类算法。【方法】利用改进FCM聚类算法对陆上风电场集电线路回路进行划分。该算法综合考虑了方位角与欧式距离,以保障回路间线路不交叉,并使相邻机组聚集到同一回路;引入机位到聚类中心距离的修正因子,通过调节其数值限制回路容量。在回路划分的基础上,利用动态Prim算法对各回路进行集电线路优化选线。最后,通过某陆上风电场算例验证方法的有效性。【结果】与只考虑方位角的聚类方法相比,考虑方位角和间距的改进FCM算法优化效果更好,单回、双回连接对应的集电线路总造价分别降低了2.6%和5.4%。【结论】所提算法能够有效降低集电线路的总造价,具有一定的应用价值,可为风电场集电线路设计提供参考。 展开更多
关键词 陆上风电场 集电线路 拓扑结构优化 模糊c-均值(FCM)算法 动态Prim算法
下载PDF
采用混合策略联合优化的模糊C-均值聚类信息熵点云简化算法 被引量:1
13
作者 黄鹤 黄佳慧 +2 位作者 刘国权 王会峰 高涛 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第7期214-226,共13页
针对传统聚类算法处理点云简化问题时精度低、耗时长且易丢失特征信息等问题,提出了一种基于动态精英自适应混合策略的鹈鹕算法(DEAMPOA)与加权熵法联合优化的模糊C-均值聚类(FCM)信息熵点云简化算法。采用动态自适应种群混合策略,同时... 针对传统聚类算法处理点云简化问题时精度低、耗时长且易丢失特征信息等问题,提出了一种基于动态精英自适应混合策略的鹈鹕算法(DEAMPOA)与加权熵法联合优化的模糊C-均值聚类(FCM)信息熵点云简化算法。采用动态自适应种群混合策略,同时融合了精英反向化思路,显著提升了鹈鹕优化算法(POA)的收敛趋势和全局寻优能力,提高了寻找FCM最优聚类中心的成功率;利用DEAMPOA结合加权熵法对FCM进行优化,提高鲁棒性的同时增强了搜索精度,得到较好的聚类结果;在8种UCI标准数据集上与4种算法对比进行聚类性能评估实验,验证了所提方法综合性能优越;将所提方法与信息熵融合,并应用在三维点云KITTI数据集简化中。实验结果表明:与包围框简化法、随机采样简化法和特征选择简化法对比,所提方法全局误差简化前后点集之间平均欧式距离(MED)指标分别降低了2.25%、6.93%、5.74%,点云简化效果最优且运行速度满足要求。 展开更多
关键词 c-均值 鹈鹕优化算法 点云简化 信息熵
下载PDF
基于模糊C-均值聚类算法的动态等值研究
14
作者 杨濛濛 《中国设备工程》 2024年第1期97-98,共2页
近年来,随着特高压交直流输电线路的不断建立,需要准确地模拟交直流大电网故障期间的暂态特性已十分困难。电磁暂态仿真计算结果较为准确,但计算量太大,因此需要在计算前对被仿真网络进行动态等值。本文首先介绍了模糊C-均值聚类算法(F... 近年来,随着特高压交直流输电线路的不断建立,需要准确地模拟交直流大电网故障期间的暂态特性已十分困难。电磁暂态仿真计算结果较为准确,但计算量太大,因此需要在计算前对被仿真网络进行动态等值。本文首先介绍了模糊C-均值聚类算法(FCM)及基于物理等效的动态等值计算方法;然后,提出了基于模糊C-均值聚类算法的动态等值计算方法及其流程图。最后,对某区域进行FCM机组分群,并进行动态等值计算,结果表明,采用基于FCM的动态等值方法,等值前后的动态特性基本一致,该方法具有良好的实用性。 展开更多
关键词 模糊c-均值算法 动态等值 参数
下载PDF
基于模糊聚类和改进Densenet网络的小样本轴承故障诊断
15
作者 魏文军 张轩铭 杨立本 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2024年第3期154-163,共10页
针对实际中轴承的故障数据少难以满足深度学习数据大量训练模型的要求,利用卷积神经网络的微小特征提取优势和模糊聚类不需要训练即可完成分类的特点,提出了一种基于模糊聚类和改进Densenet网络的小样本轴承故障诊断方法。首先将预训练... 针对实际中轴承的故障数据少难以满足深度学习数据大量训练模型的要求,利用卷积神经网络的微小特征提取优势和模糊聚类不需要训练即可完成分类的特点,提出了一种基于模糊聚类和改进Densenet网络的小样本轴承故障诊断方法。首先将预训练微调的Densenet网络去掉分类只保留特征提取层,设计一个维度自适应全局均值池化层(GAP)代替全连接层(FC),其次利用模糊聚类代替Densenet网络的softmax分类层,不需要训练即可完成分类。实验结果表明:该算法利用小样本数据训练网络中的GAP参数,模型需要的训练样本大大减少,诊断时将轴承时域图像输入到网络中,在GAP层输出1 920个特征数据,不同故障状态的特征数据构建特征向量矩阵,利用模糊聚类方法求得模糊相似矩阵和模糊等价矩阵,当置信因子从大到小变化时,由对应布尔矩阵得到动态聚类图,从而实现轴承故障分类。 展开更多
关键词 小样本 全局均值池化层 迁移学习 模糊 故障诊断
下载PDF
基于改进模糊聚类算法的大数据随机挖掘仿真 被引量:1
16
作者 李萍 刘金金 《计算机仿真》 2024年第2期496-499,521,共5页
大数据挖掘是从大量有噪声的、随机模糊的大数据中提取有价值信息的过程,由于海量大数据具有多维性、稀疏性以及动态性等特点,准确获取其分布特征的难度较大,随机挖掘难以直接实现。为此提出基于改进模糊聚类算法的大数据随机挖掘方法... 大数据挖掘是从大量有噪声的、随机模糊的大数据中提取有价值信息的过程,由于海量大数据具有多维性、稀疏性以及动态性等特点,准确获取其分布特征的难度较大,随机挖掘难以直接实现。为此提出基于改进模糊聚类算法的大数据随机挖掘方法。利用建立的语义概念树模型获取大数据的特征分布关系,并根据模糊语义分析法得出大数据的语义相似性、关联性条件,提取大数据特征。优先确定最佳聚类数,采用改进模糊聚类算法对其聚类,实现基于改进模糊算法的大数据随机挖掘。实验结果表明,上述方法的大数据模糊聚类效果较好,随机挖掘准确率可达到95%以上,实验所得结果验证了上述方法较强的应用有效性。 展开更多
关键词 改进模糊算法 大数据随机挖掘 语义概念树 特征提取 特征
下载PDF
基于模糊C均值聚类的高铁动车组电缆终端局部放电识别
17
作者 杨燕花 陈珍宝 +4 位作者 曹晗 张彦林 刘凯 陈奎 高国强 《机车电传动》 2024年第3期156-163,共8页
局部放电检测作为一种诊断车载电缆终端绝缘状态的有效手段,在列车实际运行环境中面临强干扰问题,为此文章提出了一种基于波形参数分析和模糊C均值聚类的车载电缆终端局放脉冲干扰分离策略。在实验室搭建了局部放电测试平台并采用高频... 局部放电检测作为一种诊断车载电缆终端绝缘状态的有效手段,在列车实际运行环境中面临强干扰问题,为此文章提出了一种基于波形参数分析和模糊C均值聚类的车载电缆终端局放脉冲干扰分离策略。在实验室搭建了局部放电测试平台并采用高频电流法(HFCT)获取了电缆终端的局放信号和典型脉冲干扰信号,通过对脉冲单波进行包络处理,提取脉冲的3个参数作为特征向量,然后采用模糊C均值聚类方法对局放信号与脉冲干扰信号进行分离。试验结果表明,该方法能够有效地将局放信号与脉冲干扰信号分离,减小脉冲干扰信号对局部放电检测的影响,对提高局放手段评估车载电缆终端绝缘状态的准确性具有一定意义。 展开更多
关键词 动车组 电缆终端 局部放电 脉冲干扰 模糊C均值
下载PDF
基于相对熵改进模糊C均值聚类的溢流预警研究 被引量:1
18
作者 李辉 满曰南 +1 位作者 李红星 孙鹏 《钻采工艺》 CAS 北大核心 2023年第3期165-170,共6页
钻井过程中溢流的早期发现非常重要,目前国内外基于人工智能的溢流预警模型普遍使用大量先验知识或训练数据,其准确性、实时性、可靠性完全受限于先验知识和训练数据,文章提出了基于相对熵改进模糊C均值聚类的溢流预警模型,采用相对熵... 钻井过程中溢流的早期发现非常重要,目前国内外基于人工智能的溢流预警模型普遍使用大量先验知识或训练数据,其准确性、实时性、可靠性完全受限于先验知识和训练数据,文章提出了基于相对熵改进模糊C均值聚类的溢流预警模型,采用相对熵理论改进模糊C均值聚类算法,克服传统模糊C均值聚类时聚类数目由用户主动给出的缺点,并结合溢流故障的发生与立压、套压的变化趋势具有相关性的特点,建立了早期溢流智能预警模型,实现对早期溢流的及时发现。通过对现场数据的仿真分析表明,该预警模型能够通过立压和套压的斜率变化及时准确地判断是否发生溢流。 展开更多
关键词 相对熵 模糊C均值 溢流预警模型
下载PDF
基于改进犹豫模糊C-均值的图像分割
19
作者 王海超 王丽丽 +1 位作者 郑爱宇 郝静 《计算机系统应用》 2024年第6期37-47,共11页
犹豫模糊C-均值(hesitant fuzzy C-means,HFCM)聚类算法在一定程度上处理了图像中不同像素块之间的不确定性,但由于其目标函数中不包含任何局部空间信息,因此对噪声比较敏感,当噪声较大时无法获得较好的分割精度.针对上述问题,提出了一... 犹豫模糊C-均值(hesitant fuzzy C-means,HFCM)聚类算法在一定程度上处理了图像中不同像素块之间的不确定性,但由于其目标函数中不包含任何局部空间信息,因此对噪声比较敏感,当噪声较大时无法获得较好的分割精度.针对上述问题,提出了一种改进犹豫模糊C-均值(improved hesitant fuzzy C-means,IHFCM)的图像分割方法.首先给出了犹豫模糊元(hesitant fuzzy element)的补齐方法,然后提出了犹豫模糊元之间的相似性度量,利用犹豫模糊元之间的相似性度量构造了新颖的模糊因子融合到HFCM的目标函数中,新的模糊因子不仅考虑了局部窗口中的空间信息而且考虑了像素间的相似性,平衡噪声带来的影响且保留了图像细节.最后,在合成图像、BSDS500数据集图像以及自然图像上的分割实验结果表明,所提出的IHFCM算法对噪声有良好的鲁棒性,提升了分割精度. 展开更多
关键词 犹豫模糊c-均值 相似性度量 犹豫模糊 图像分割
下载PDF
基于改进K均值聚类的光谱重建训练样本选择研究
20
作者 刘振 刘莉 +2 位作者 樊硕 赵安然 刘思鲁 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第1期29-35,共7页
光谱反射率重建过程中,训练样本的选择方法及样本容量与重建精度密切相关,寻找一种高效的训练样本选择方法是光谱重建的目标之一。K均值聚类计算复杂度小,计算效率高,但因聚类初始值选择的随机性,以及离群点的影响致使聚类结果不稳定,... 光谱反射率重建过程中,训练样本的选择方法及样本容量与重建精度密切相关,寻找一种高效的训练样本选择方法是光谱重建的目标之一。K均值聚类计算复杂度小,计算效率高,但因聚类初始值选择的随机性,以及离群点的影响致使聚类结果不稳定,进而影响光谱重建的精度。基于此,提出了一种改进K均值聚类的训练样本选择方法。首先,将训练样本集的几何中心作为聚类中心的初始值;其次,基于高斯函数构建样本空间分布概率密度函数,并以欧几里德(欧式)距离作为其他聚类中心的度量依据;最后,在训练样本集中,基于簇内平方差度量光谱反射率样本间的相似度,将每个聚类子集中与中心距离最近的样本作为训练样本。为验证该方法的有效性,通过主成分分析法进行光谱重建。实验结果表明,所提的方法相较于传统的方法,光谱重建精度有一定的提高,重建光谱的平均均方根误差小于4%, CIE DE2000色差小于3.756 7。提出的改进的K均值聚类的训练样本选择方法,能够一定程度上提高了光谱重建精度,基本满足复制再现图像的要求。 展开更多
关键词 光谱重建 训练样本 算法 改进K均值
下载PDF
上一页 1 2 136 下一页 到第
使用帮助 返回顶部