期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进MaskR-CNN模型的秀珍菇表型参数自动测量方法 被引量:2
1
作者 周华茂 王婧 +1 位作者 殷华 陈琦 《智慧农业(中英文)》 CSCD 2023年第4期117-126,共10页
[目的/意义]秀珍菇表型是其品质和栽培环境适应性的反映,但目前人工测量表型参数耗时费力、主观性强,亟需自动化分析手段。[方法]一种基于改进Mask R-CNN的秀珍菇测量模型PG-Mask R-CNN (Pleurotus geesteranus-Mask Region-Based Convo... [目的/意义]秀珍菇表型是其品质和栽培环境适应性的反映,但目前人工测量表型参数耗时费力、主观性强,亟需自动化分析手段。[方法]一种基于改进Mask R-CNN的秀珍菇测量模型PG-Mask R-CNN (Pleurotus geesteranus-Mask Region-Based Convolutional Neural Network),提出以损伤率为指标的裂纹评价方法,并对其进行量化评价。PG-Mask R-CNN模型以Mask R-CNN为主体,通过向特征提取网络Resnet101中添加Sim AM注意力机制,在不增加原始网络参数的情况下提高网络性能;采用改进的特征金字塔进行多尺度融合,融合多层级的信息进行预测;将GIo U (Generalized Intersection over Union)边界框回归损失函数替代原有的Io U (Intersection over Union)损失函数,完善图像重叠度的计算,进一步提高模型性能。[结果和讨论] PG-Mask R-CNN模型目标检测的m AP和m AR分别为84.8%和87.7%,均高于目前主流的YOLACT (You Only Look At Coefficien Ts)、Insta Boost、Query Inst和Mask R-CNN模型;实例分割结果的MRE (Mean Relative Error)为0.90%,均低于其他实例分割模型;PG-Mask R-CNN模型的参数量为51.75 M,略大于原始的Mask R-CNN,均小于其他实例分割模型。对分割后的菌盖和裂纹进行测量,所得结果的MRE分别为1.30%和7.54%,损伤率的MAE (Mean Absolute Error)为0.14%。[结论]本研究提出的PG-Mask R-CNN模型对秀珍菇的菌柄、菌盖及裂纹识别与分割具有较高的准确率,在此基础上能够实现对秀珍菇表型参数的自动化测量,这为后续秀珍菇智慧化育种、智能栽培与分级奠定了技术基础。 展开更多
关键词 秀珍菇 Mask R-CNN SimAM模块 Resnet101 表型分析 改进的特征金字塔
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部