当采用传统的全显式算法对高度非线性的弹塑性本构模型进行数值实现过程中,存在计算效率低、误差积累、精度较低的缺点.为提高计算效率和改善计算精度,采用四阶的Dormand and Prince Runge-Kutta法代替传统的全显式算法中的向前Euler法...当采用传统的全显式算法对高度非线性的弹塑性本构模型进行数值实现过程中,存在计算效率低、误差积累、精度较低的缺点.为提高计算效率和改善计算精度,采用四阶的Dormand and Prince Runge-Kutta法代替传统的全显式算法中的向前Euler法,并结合切平面算法形成了改进显式算法.以考虑土体结构性的SANICLAY模型为例,对传统的全显式算法、改进显式算法和隐式算法在计算收敛性、效率和精度方面进行对比.将改进显式算法用于隧道开挖工程多单元计算中.结果表明,与隐式算法相比,传统的全显式算法的计算精度和计算效率均比较低,改进显式算法计算效率和计算精度均比传统的全显式算法高很多.展开更多
文摘当采用传统的全显式算法对高度非线性的弹塑性本构模型进行数值实现过程中,存在计算效率低、误差积累、精度较低的缺点.为提高计算效率和改善计算精度,采用四阶的Dormand and Prince Runge-Kutta法代替传统的全显式算法中的向前Euler法,并结合切平面算法形成了改进显式算法.以考虑土体结构性的SANICLAY模型为例,对传统的全显式算法、改进显式算法和隐式算法在计算收敛性、效率和精度方面进行对比.将改进显式算法用于隧道开挖工程多单元计算中.结果表明,与隐式算法相比,传统的全显式算法的计算精度和计算效率均比较低,改进显式算法计算效率和计算精度均比传统的全显式算法高很多.