期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
基于ICEEMDAN和共振解调的轴承故障检测方法
1
作者 唐斌 池茂儒 +2 位作者 赵明花 李大柱 许文天 《铁道机车车辆》 北大核心 2024年第4期84-91,共8页
对于滚动轴承的故障检测,提出了一种基于带自适应噪声的改进完全集合经验模态分解(ICEEMDAN)和共振解调的轴承故障检测方法。通过ICEEMDAN算法,把原始振动信号分解为若干个IMF分量;选取有效IMF分量进行求和,得到重构信号;使用快速峭度... 对于滚动轴承的故障检测,提出了一种基于带自适应噪声的改进完全集合经验模态分解(ICEEMDAN)和共振解调的轴承故障检测方法。通过ICEEMDAN算法,把原始振动信号分解为若干个IMF分量;选取有效IMF分量进行求和,得到重构信号;使用快速峭度图法确定共振频带,然后以此设计相应滤波器进行滤波;使用形态学滤波方法进行共振信号的解调,然后再利用FFT得到轴承的故障特征频谱图。内、外圈故障振动数据验证结果表明,该方法能够检测出滚动轴承的故障。 展开更多
关键词 滚动轴承 自适应噪声改进完全集合经验模态分解(iceemdan) 共振解调 快速峭度图 形态学滤波
下载PDF
基于ICEEMDAN-多尺度排列熵的拆除爆破振动信号降噪研究
2
作者 康怡泽 姚颖康 +2 位作者 董润龙 贾永胜 谢全民 《振动与冲击》 EI CSCD 北大核心 2024年第13期275-287,共13页
由于工程环境、炸药爆炸等因素影响,实测建(构)筑物爆破拆除所产生的低频振动信号常受到噪声干扰。提出改进的自适应噪声完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise, ICEEMDAN... 由于工程环境、炸药爆炸等因素影响,实测建(构)筑物爆破拆除所产生的低频振动信号常受到噪声干扰。提出改进的自适应噪声完全集合经验模态分解(improved complete ensemble empirical mode decomposition with adaptive noise, ICEEMDAN)与多尺度排列熵联合的降噪算法,并运用皮尔逊系数、信噪比和均方误差来验证所用算法的可行性。对实测拆除爆破塌落触地振动信号进行降噪处理,通过频谱分析以及各类指标对比表明,该联合降噪方法能够有效降低拆除爆破振动信号中的噪声,并且对信号的低频能量影响较小,降噪效果显著,为拆除爆破振动信号分析和处理提供了一种新的有效的方法。 展开更多
关键词 拆除爆破 振动信号 改进的自适应噪声完全集合经验模态分解(iceemdan) 多尺度排列熵 信号降噪
下载PDF
基于ICEEMDAN-DCN-Transformer的短期电力负荷预测
3
作者 芦志凡 赵倩 《沈阳工业大学学报》 CAS 北大核心 2024年第4期388-396,共9页
针对传统负荷预测方法易受复杂环境因素影响的问题,提出了基于ICEEMDAN-DCN-Transformer的短期电力负荷组合预测模型,该模型将电力负荷数据通过ICEEMDAN方法分解为若干个IMF和一个Res函数,考虑复杂环境因素的影响,将分解后各分量与环境... 针对传统负荷预测方法易受复杂环境因素影响的问题,提出了基于ICEEMDAN-DCN-Transformer的短期电力负荷组合预测模型,该模型将电力负荷数据通过ICEEMDAN方法分解为若干个IMF和一个Res函数,考虑复杂环境因素的影响,将分解后各分量与环境特征并行输入到DCN-Transformer中进行预测,并将各组预测数据线性相加得到完整的预测结果。以泉州市电力负荷历史数据为基础进行实验,建立4种单一预测模型和3种组合预测模型作为对比模型,对该地10 d、240 h的电力负荷序列加以预测。结果表明,相较于传统算法,所提算法可以显著提高负荷预测的精度并有效降低误差评价指标值,为电力系统的安全运行和规划制定提供理论依据。 展开更多
关键词 电力负荷预测 改进完全自适应噪声集合经验模态分解算法 深度交叉网络 预测精度 短期负荷 组合预测模型 误差评价
下载PDF
基于改进深度残差收缩网络的电缆早期故障识别
4
作者 唐丹 吴浩 +1 位作者 蔡源 郑超文 《科学技术与工程》 北大核心 2024年第28期12159-12168,共10页
电缆早期故障的多次发生易造成电缆出现永久性故障,给电网的稳定运行带来严重的影响。为了在永久性故障发生前准确识别出电缆早期故障,提出一种基于改进深度残差收缩网络的电缆早期故障识别方法。首先通过改进的完全自适应噪声经验模态... 电缆早期故障的多次发生易造成电缆出现永久性故障,给电网的稳定运行带来严重的影响。为了在永久性故障发生前准确识别出电缆早期故障,提出一种基于改进深度残差收缩网络的电缆早期故障识别方法。首先通过改进的完全自适应噪声经验模态分解方法(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)进行故障信号处理,并利用相关系数筛选本征模态函数(intrinsic mode functions,IMF);然后对IMF分量求其复合多尺度排列熵作为进一步的特征提取,以构建特征数据集;最后利用改进的收缩模块,多尺度卷积层、Self-Attention和SimAM注意力机制对深度残差收缩网络进行改进。使用改进的深度残差收缩网络进行电缆早期故障识别实验。实验结果表明:该算法能准确识别出电缆早期故障,且具有一定的抗干扰能力。 展开更多
关键词 电缆早期故障 改进的完全自适应噪声经验模态分解方法(iceemdan) 复合多尺度排列熵 改进深度残差收缩网络 故障识别
下载PDF
基于ICEEMDAN-SE-MSGJO-LSTM-EC的短期风电功率预测
5
作者 刘志坚 孙瑞星 +2 位作者 黄建 张江云 何超 《电机与控制应用》 2023年第12期42-53,共12页
为了提高风电功率短期预测精度,本文提出了一种基于ICEEMDAN-SE-MSGJO-LSTM-EC模型的短期风电功率预测模型。首先,通过ICEEMDAN对原始风功率信号进行分解并通过样本熵计算熵值相近的分量相加重构。其次,建立MSGJO-LSTM预测模型,通过改... 为了提高风电功率短期预测精度,本文提出了一种基于ICEEMDAN-SE-MSGJO-LSTM-EC模型的短期风电功率预测模型。首先,通过ICEEMDAN对原始风功率信号进行分解并通过样本熵计算熵值相近的分量相加重构。其次,建立MSGJO-LSTM预测模型,通过改进金豺优化算法(MSGJO)优化LSTM网络参数,对各模态分量进行预测。最后,通过对各模态分量预测结果进行误差修正(EC)并将所有模态预测结果相加得到最终预测结果。以新疆某风电场为例,采用本文所提预测模型进行仿真分析,试验结果表明本文基于ICEEMDAN-SE-MSGJO-LSTM-EC的预测模型预测精度更高。 展开更多
关键词 风电功率预测 误差修正 改进自适应噪声完全集合经验模态分解 改进金豺优化算法 长短期记忆网络
下载PDF
基于ICEEMDAN-IPSO-ELM的硅油溶解气体浓度组合预测方法 被引量:1
6
作者 李长云 杨静雨 +3 位作者 连鸿松 郑东升 赖永华 刘慧鑫 《高电压技术》 EI CAS CSCD 北大核心 2023年第9期3887-3897,共11页
高压电缆充油终端作为电力系统中传输电能的重要设备,对充油电缆终端内填充的硅油溶解气体浓度进行可靠预测,可为硅油的故障诊断提供一定的支撑。因此,提出一种基于局部异常因子与ICEEMDAN-IPSO-ELM的硅油中溶解气体浓度预测模型。首先... 高压电缆充油终端作为电力系统中传输电能的重要设备,对充油电缆终端内填充的硅油溶解气体浓度进行可靠预测,可为硅油的故障诊断提供一定的支撑。因此,提出一种基于局部异常因子与ICEEMDAN-IPSO-ELM的硅油中溶解气体浓度预测模型。首先,搭建模拟电缆终端内部硅油老化实验平台,通过色谱分析获得硅油中溶解气体浓度序列,进而对硅油中溶解气体浓度时间序列进行数据清洗,采用局部离群因子检测方法判断异常值并进行合理的修正,进而采用改进自适应白噪声完全集合经验模态分解将修正后的硅油中溶解气体浓度序列进行分解,得到不同时间尺度的本征模态函数分量,可以有效降低高、低频分量间的相互影响;其次,针对具有不同特征的频率分量搭建极限学习机网络预测模型,针对极限学习机模型参数较难选取的问题,采用改进粒子群优化方法对模型的权值和阈值参数寻优求解,在一定程度上优化了粒子群方法的寻优能力,并提高了组合预测方法的可靠性;最后,将不同频率分量的计算结果加和,便可得到硅油中溶解气体浓度的预测含量。具体实例表明,与其他预测模型相比,该方法能够可靠预测出硅油中溶解气体含量的未来走势,为硅油故障诊断技术提供了有力的保障。 展开更多
关键词 高压电缆充油终端 局部离群因子 极限学习机 硅油中溶解气体 改进粒子群优化算法 改进自适应噪声完全集合经验模态分解
下载PDF
基于校准窗口集成与耦合市场特征的可解释双层日前电价预测
7
作者 刘慧鑫 沈晓东 +3 位作者 魏泽涛 刘友波 刘俊勇 白元宝 《中国电机工程学报》 EI CSCD 北大核心 2024年第4期1272-1285,I0003,共15页
随着电力市场之间耦合程度不断加深,只局限于单个市场内部的传统特征集不足以支撑高精度预测的需求。而且模型预测性能对校准窗口的选择敏感,而传统电价预测仅使用一个固定时间长度的数据集,同时预测模型的“黑盒”结构导致预测结果在... 随着电力市场之间耦合程度不断加深,只局限于单个市场内部的传统特征集不足以支撑高精度预测的需求。而且模型预测性能对校准窗口的选择敏感,而传统电价预测仅使用一个固定时间长度的数据集,同时预测模型的“黑盒”结构导致预测结果在工程应用中可信度偏低。针对上述问题,该文提出一种考虑校准窗口集成与耦合市场特征的可解释双层日前电价预测框架。内层框架为基于改进自适应噪声完备集合经验模态分解(improved complete ensemble empirical mode decomposition,ICEEMDAN)的择优预测,首先分解原始电价序列,然后应用Lasso估计回归(lassoestimated autoregressive,LEAR)、长期和短期时间序列网络(long-term and short-term time-series networks,LSTNet)、卷积神经网络-长短记忆神经网络(convolutionalneuralnetworks-longshort termmemory,CNN-LSTM)、移动平均(autoregressive integrated moving average,ARIMA)和核极限学习机(kernel extreme learning machines,KELM)模型预测子序列并选择最优预测算法。外层框架为基于贝叶斯模型平均(bayes modelaveraging,BMA)的校准窗口集成预测,针对每个不同校准窗口长度数据集下的预测分配权重并集成得到预测电价。最后,通过可解释方法沙普利加性解释模型(shapley additiveexplanations,SHAP)分析耦合市场特征如何影响预测电价。该文通过北欧电力市场数据集的算例分析证明了所提算法的优越性和校准窗口集成方案的有效性。 展开更多
关键词 校准窗口集成 耦合市场特征 双层预测框架 改进自适应噪声完备集合经验模态分解(iceemdan) 贝叶斯模型平均(BMA) 沙普利加性解释模型(SHAP)
下载PDF
基于深度学习的电池健康状态监测与预测系统设计
8
作者 凌明毅 《通信电源技术》 2024年第15期88-91,共4页
文章旨在设计一套能够实时监测锂离子电池健康状态并进行准确预测的系统。通过整合改进的完全自适应噪声集合经验模态分解(Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,ICEEMDAN)信号分解算法、支持... 文章旨在设计一套能够实时监测锂离子电池健康状态并进行准确预测的系统。通过整合改进的完全自适应噪声集合经验模态分解(Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,ICEEMDAN)信号分解算法、支持向量回归(Support Vector Regression,SVR)算法以及长短期记忆(Long Short-Term Memory,LSTM)网络模型,构建了一个综合性的电池健康管理系统。通过对锂离子电池进行恒流恒压充电、恒流放电以及阻抗测量等,利用所获取的数据进行预处理、分解及模型训练。结果显示,所提出的系统能够有效预测电池的容量、健康状态及剩余使用时间,与实际数据符合度较高。该研究为电池健康管理领域的发展提供了有效参考,具有一定的理论和应用价值。 展开更多
关键词 电池健康管理 锂离子电池 实时监测 改进的完全自适应噪声集合经验模态分解(iceemdan)
下载PDF
基于FastICA与ICEEMDAN的人脸视频心率检测 被引量:3
9
作者 赵明康 王镇 +2 位作者 齐晨成 王艺潇 张帅 《中国生物医学工程学报》 CAS CSCD 北大核心 2022年第4期508-512,共5页
现有的非接触式心率检测方法存在噪声干扰、准确率低等问题。针对这些问题,提出一种基于FastICA与改进的自适应噪声完全集合经验模态分解(ICEEMDAN)相结合的算法,采用人脸视频进行心率检测。用摄像头采集人脸视频,并从视频中提取R、G、... 现有的非接触式心率检测方法存在噪声干扰、准确率低等问题。针对这些问题,提出一种基于FastICA与改进的自适应噪声完全集合经验模态分解(ICEEMDAN)相结合的算法,采用人脸视频进行心率检测。用摄像头采集人脸视频,并从视频中提取R、G、B通道源信号,即皮肤颜色变化信号,分别求出RGB这3个颜色通道的像素平均值;然后利用FastICA对RGB这3组像素平均值进行解混,得到3组独立源信号,再用ICEEMDAN将其中一组独立源信号进行模态分解,并选取合适频段内的固有模式函数(IMF)估计心率的信号,最后用频谱分析计算得到心率。设计实验对8名人员进行了人脸视频检测,将检测结果与多参数监护仪进行对比分析。实验结果表明,该方法与多参数监护仪测量结果的平均误差与均方根误差均小于1 beat/min,因此基于FastICA与ICEEMDAN的人脸视频心率检测对人体心率检测具有良好的稳定性和准确性。 展开更多
关键词 人脸视频 非接触心率检测 光电容积脉搏波 快速独立成分分析(FastICA) 改进的自适应噪声完全集合经验模式分解(iceemdan)
下载PDF
基于ICEEMDAN-MSE的左室舒张功能障碍心音信号的识别研究 被引量:6
10
作者 杨洋 郭兴明 +1 位作者 郑伊能 王慧 《仪器仪表学报》 EI CAS CSCD 北大核心 2022年第1期274-281,共8页
左室舒张功能障碍(LVDD)加重会导致左室重构、室壁僵硬、顺应性降低,从而走向不可逆阶段并进展为射血分数保留型心力衰竭。为早期诊断LVDD,本文提出一种基于改进的自适应噪声完全集合经验模式分解(ICEEMDAN)多尺度样本熵(MSE)的心音特... 左室舒张功能障碍(LVDD)加重会导致左室重构、室壁僵硬、顺应性降低,从而走向不可逆阶段并进展为射血分数保留型心力衰竭。为早期诊断LVDD,本文提出一种基于改进的自适应噪声完全集合经验模式分解(ICEEMDAN)多尺度样本熵(MSE)的心音特征结合逻辑回归模型的无创检测方法。首先,采用改进的小波去噪方法对心音信号进行预处理。其次,通过ICEEMDAN方法将非平稳的心音信号分解为多个反映心音本体特征的平稳的固有模态函数(IMF),再利用互相关系数准则筛选IMF,并提取所筛选IMF的MSE,以构成特征向量作为分类器的输入。最后,通过与其他3种分类模型的性能比较,将逻辑回归应用于LVDD识别。结果表明,该方法能有效提取心音特征,其准确率为89.85%,灵敏度为92.17%,特异度为87.63%,证明了采用心音信号对LVDD进行早期诊断的有效性。 展开更多
关键词 左室舒张功能障碍 改进的自适应噪声完全集合经验模式分解 多尺度样本熵 逻辑回归 识别
下载PDF
基于ICEEMDAN的连续梁桥车致振动信号的HHT分析 被引量:4
11
作者 邢世玲 吕双双 +1 位作者 朱利明 张佳 《西南交通大学学报》 EI CSCD 北大核心 2021年第3期477-484,492,共9页
改进的带有自适应噪声的完备集合经验模式分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)是传统经验模式分解(empirical mode decomposition,EMD)方法的发展,在桥梁结构损伤识别领域具... 改进的带有自适应噪声的完备集合经验模式分解(improved complete ensemble empirical mode decomposition with adaptive noise,ICEEMDAN)是传统经验模式分解(empirical mode decomposition,EMD)方法的发展,在桥梁结构损伤识别领域具有较好的应用前景.首先,以数值模拟信号为对象,采用ICEEMDAN方法进行桥梁车致动信号的数据分解和Hilbert谱分析,提取损伤引起的频谱特征变化和建立损伤识别方法;然后,利用该方法对实测振动信号的振型分量进行识别;最后,以实测信号的一阶振型分量为对象,对其Hilbert瞬时频率谱的特征进行了分析和讨论.研究结果表明:模拟信号中的振型振动分量数比实测信号中多,其中模拟信号中不显著的高阶竖弯振动分量在实测信号中没有发现;一阶振型振动分量的瞬时频率可作为桥梁损伤识别的特征参数,用于进行损伤有无、损伤定位甚至损伤定量的判断;损伤识别效果受测点位置影响很小;该方法不依赖有限元模型即可完成桥梁损伤有无的识别和损伤定位,且数据采集简单,具有实际工程中应用可行性. 展开更多
关键词 连续梁桥 改进的带有自适应噪声的完备集合经验模式分解 车致振动 Hilbert-Hang变换(HHT) 损伤识别
下载PDF
基于ICEEMDAN与环境负载的GNSS坐标时序非线性形变去除 被引量:1
12
作者 王勇 曹慧鹏 +2 位作者 李锁 闫勇 杨军 《全球定位系统》 CSCD 2022年第2期90-98,共9页
非线性形变影响全球卫星导航系统(GNSS)坐标时序精度.采用改进的自适应噪声总体集合经验模态分解(ICEEMDAN)和环境负载改正相结合的方法开展GNSS测站非线性形变去除研究.首先使用GMIS软件将GNSS坐标时序补充完整并去除粗差,然后使用ICEE... 非线性形变影响全球卫星导航系统(GNSS)坐标时序精度.采用改进的自适应噪声总体集合经验模态分解(ICEEMDAN)和环境负载改正相结合的方法开展GNSS测站非线性形变去除研究.首先使用GMIS软件将GNSS坐标时序补充完整并去除粗差,然后使用ICEEMDAN方法对GNSS坐标时序进行分解,使用排列熵算法选取包含噪声和非线性形变的高频分量,最后使用环境负载对高频分量进行去除,利用经验模态分解(EMD)方法和环境负载结合的方法进行去除效果对比.研究结果表明:非线性形变去除后的GNSS坐标时序均方根(RMS)变化各有区别,垂向(U)方向最为明显,最大值达6.715 mm,东(E)方向次之,北(N)方向最小;ICEEMDAN方法和环境负载改正结合后N方向的非线性形变全部得到了削弱,E方向的非线性形变有75%得到了削弱,U方向的非线性形变有62.5%得到了削弱,其改正效果优于EMD方法和环境负载结合的改正效果. 展开更多
关键词 改进的自适应噪声总体集合经验模态分解(iceemdan) 经验模态分解(EMD) 环境负载 坐标时间序列
下载PDF
ICEEMDAN在GNSS-MR海平面高度反演中的应用
13
作者 刘睿国 刘立龙 +3 位作者 吴晗 范兴群 刘卓仑 张卫平 《测绘科学技术》 2022年第3期140-148,共9页
针对全球导航卫星系统多路径反射测量(GNSS multipath reflectometry, GNSS-MR)技术存在的信噪比(Signal-to-Noise Ratio, SNR)信号中掺杂噪声的问题,提出利用改进的自适应噪声的完全集合经验模态分解方法对原始信噪比数据进行分解,筛... 针对全球导航卫星系统多路径反射测量(GNSS multipath reflectometry, GNSS-MR)技术存在的信噪比(Signal-to-Noise Ratio, SNR)信号中掺杂噪声的问题,提出利用改进的自适应噪声的完全集合经验模态分解方法对原始信噪比数据进行分解,筛选出不含噪声的有效残差序列,实现去噪处理,再应用于GNSS-MR技术反演海平面高度。以西印度洋非洲东海岸MAYG测站GPS数据进行实验,结果表明该方法相比二次多项式拟合方法,均方根误差降低了29%,相关系数为0.98,验证了该方法应用于海平面测高的有效性。 展开更多
关键词 GNSS-MR 改进的自适应噪声完全集合经验模态分解 信噪比(SNR) 海平面高度
下载PDF
基于CEEMDAN-IPSO-LSTM的城市轨道交通短时客流预测方法研究 被引量:3
14
作者 曾璐 李紫诺 +1 位作者 杨杰 许心越 《铁道科学与工程学报》 EI CAS CSCD 北大核心 2023年第9期3273-3286,共14页
消除客流数据随机噪声和确定神经网络超参数是城市轨道交通短时客流预测组合模型需要解决的关键问题。基于弱化客流数据噪声的自适应噪声完全集成经验模式分解算法(CEEMDAN)将客流时序数据分解为若干个频率和复杂度均不同的固有模态函... 消除客流数据随机噪声和确定神经网络超参数是城市轨道交通短时客流预测组合模型需要解决的关键问题。基于弱化客流数据噪声的自适应噪声完全集成经验模式分解算法(CEEMDAN)将客流时序数据分解为若干个频率和复杂度均不同的固有模态函数分量和剩余分量后,利用引入自适应策略的改进粒子群算法(IPSO)动态求解长短期记忆神经网络(LSTM)超参数的最优值,构建CEEMDAN-IPSO-LSTM组合模型预测城市轨道交通短时客流量。以广州地铁杨箕站自动售检票系统采集的历史进(出)站客流数据为例进行实验,研究结果表明:IPSO算法较PSO算法在基准测试函数Sphere,Sum Squars,Sum of Different Power,Rosenbrock,Rastigrin,Ackley,Griewank和Penalized上的最小值、最大值、平均值和标准差均更接近最佳优化值,CEEMDAN-IPSO-LSTM模型较LSTM模型、CEEMDAN-LSTM模型、CEEMDAN-PSO-LSTM模型的全月全日进(出)站的预测误差评价指标SD,RMSE,MAE和MAPE分别降低了12~40人次(13~35人次)、13~44人次(12~35人次)、6~37人次(12~31人次)和5.08%~46.89%(6.5%~35.1%),R和R2分别提高了0.07%~2.32%(0.86%~3.63%)和0.13%~2.19%(0.67%~1.67%),同时在工作日不同时段和非工作日全日的预测性能均达到最优效果。IPSO算法的收敛速度和参数寻优精度均优于PSO算法,且CEEMDAN-IPSO-LSTM模型可应用于城市轨道交通短时客流量的精确预测,同时可为设计规划线网路线、缓解交通压力、提高乘客出行服务质量等提供基础数据支撑。 展开更多
关键词 城市轨道交通 短时客流预测 自适应噪声完全集成经验模式分解算法 改进粒子群算法 长短期记忆神经网络 组合模型 CEEMDAN-IPSO-LSTM
下载PDF
基于CEEMDAN-IAWT方法的滚动轴承振动信号降噪 被引量:4
15
作者 任海军 韦冲 +2 位作者 谭志强 罗亮 丁显飞 《振动与冲击》 EI CSCD 北大核心 2023年第13期199-207,268,共10页
针对滚动轴承振动信号中混入噪声的问题,设计一种自适应白噪声完全集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)结合改进自适应小波阈值(improved adaptive wavelet threshold,IAWT... 针对滚动轴承振动信号中混入噪声的问题,设计一种自适应白噪声完全集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)结合改进自适应小波阈值(improved adaptive wavelet threshold,IAWT)的联合降噪法。使用CEEMDAN对信号进行模态分解得到本征模态函数(intrinsic mode functions,IMFs);将得到的IMFs与原信号进行相关性分析识别有效分量;针对小波阈值(wavelet threshold,WT)降噪算法不能自适应选取小波基和分解层数以及阈值函数存在缺陷的问题,设计了IAWT算法,利用IAWT算法过滤IMFs中的噪声;将处理后的IMFs进行信号重构。利用设计的联合降噪算法对仿真信号和试验台信号处理可知,相比于WT,使用IAWT处理后的信号信噪比提高了约0.5 dB,与原信号的相关系数提高了约0.03,均方根误差降低了约0.01;将设计的方法与CEEMDAN-WT等方法对比可知,经处理后的信号信噪比至少提高了1.37 dB,且信号特征保存完好。 展开更多
关键词 滚动轴承 振动信号降噪 自适应噪声完全集合经验模态分解(CEEMDAN) 改进的自适应小波阈值(IAWT)
下载PDF
基于多层信号分解的混凝土拱坝变形监测模型
16
作者 王子轩 欧斌 +3 位作者 陈德辉 杨石勇 赵定柱 傅蜀燕 《三峡大学学报(自然科学版)》 CAS 2024年第6期1-9,共9页
为了充分挖掘大坝变形监测数据的非线性和非平稳性特征,本文提出了一种大坝变形监测模型.首先,该模型通过自适应噪声完全集合经验模态分解(CEEMDAN)对变形监测数据进行分解处理.在分解过程中融入样本熵(SE)和K-均值聚类,以确保得到的模... 为了充分挖掘大坝变形监测数据的非线性和非平稳性特征,本文提出了一种大坝变形监测模型.首先,该模型通过自适应噪声完全集合经验模态分解(CEEMDAN)对变形监测数据进行分解处理.在分解过程中融入样本熵(SE)和K-均值聚类,以确保得到的模态分量(IMF)个数能够准确描述大坝变形.然后,对于高频IMF分量,采用变分模态分解(VMD)进行二次分解,并利用偏最小二乘法(PLS)分析变形序列影响因子,以提取最佳的IMF分量作为后续模型的输入因子.最后,利用改进的共生生物搜索算法(ISOS)结合长短期记忆神经网络(LSTM)进行大坝变形的准确预测.研究结果表明:相较于单层信号处理,本文通过二次信号处理可以显著提升模型的预测精度;对二次分解后的IMFs分量进行PLS筛选可以有效避免模型的冗余性,提高计算效率;相较于各对比模型,本文模型在各测点上均具有较好的预测精度和稳定性.本文提出的模型能够深入挖掘大坝监测数据中的拓扑关系,有效保留数据中的高频有用信息,从而提高预测的准确性和平滑性,展示出较好的预测精度和泛化能力. 展开更多
关键词 大坝变形 自适应噪声完全集合经验模态分解 样本熵 K-均值聚类算法 改进的共生生物搜索算法 变分模态分解
下载PDF
一种新的心率变异性度量方法 被引量:2
17
作者 邵士亮 王挺 +3 位作者 宋纯贺 崔婀娜 赵海 姚辰 《物理学报》 SCIE EI CAS CSCD 北大核心 2019年第17期295-307,共13页
心率变异性的复杂波动反映了心脏的自主调节功能.本文提出了一种新的心率变异性度量方法--ICBN方法,该方法通过改进的自适应噪声完备集合经验模态分解方法对心率变异性信号进行分解,得到多个模态分量,计算每个模态分量的bubble熵得到熵... 心率变异性的复杂波动反映了心脏的自主调节功能.本文提出了一种新的心率变异性度量方法--ICBN方法,该方法通过改进的自适应噪声完备集合经验模态分解方法对心率变异性信号进行分解,得到多个模态分量,计算每个模态分量的bubble熵得到熵值向量,把该向量映射成复杂网络,通过计算网络的特征参数,对心率变异性在不同时频尺度状态下的非线性特征之间的耦合关系进行度量.首先,采用时域、频域和ICBN分析方法对29名充血性心力衰竭病人和29名正常窦性心律对象的心率变异性进行分析,结果表明:时域指标三角指数HRVTi,频域指标LF/HF,网络层级加权值WB,平均点权值PW,特征路径长度CL具有统计学差异;基于网络层级加权值WB,特征路径长度CL,频域指标LF/HF和Fisher判别方法的识别模型对充血性心力衰竭病人的识别正确率达到89.66%.然后,又对43名房颤心律失常患者和43名正常窦性心律对象的心率变异性进行分析,结果表明:时域指标SDNN,pNN50,RMSSD,频域指标LF/HF,网络层级加权值WB,平均点权值PW具有统计学差异;时域指标pNN50,RMSSD,频域指标LF/HF和网络层级加权值WB,平均点权值PW作为特征向量,Fisher判别方法作为分类器,对房颤心律失常患者的识别正确率达到91.86%.综合以上实验结果可知,本文为心率变异性的度量研究提供了一种新的思路. 展开更多
关键词 心率变异性 改进的自适应噪声完备集合经验模态分解(iceemdan) bubble熵 复杂网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部