期刊文献+
共找到233篇文章
< 1 2 12 >
每页显示 20 50 100
一种添加部分自适应噪声的集成经验模态分解方法
1
作者 李昊 陈强 徐一雄 《南京理工大学学报》 CAS CSCD 北大核心 2024年第2期227-234,共8页
为了解决集成经验模态分解(EEMD)及其改进形式中普遍存在的噪声量和计算量需求大的问题,统计分析了白噪声内涵模态函数(IMF)的极值点和能量变化规律,总结出白噪声IMF极值点数随长度和阶数变化的经验公式。发现白噪声的高阶IMF不能有效... 为了解决集成经验模态分解(EEMD)及其改进形式中普遍存在的噪声量和计算量需求大的问题,统计分析了白噪声内涵模态函数(IMF)的极值点和能量变化规律,总结出白噪声IMF极值点数随长度和阶数变化的经验公式。发现白噪声的高阶IMF不能有效调整信号的极值点分布,提出添加部分自适应噪声的集成经验模态分解(EEMDPAN)。相比于自适应噪声完全集成经验模态分解(CEEMDAN),EEMDPAN有2点改进:不使用全部独立的自适应噪声,而使用成对相加为0的互补自适应噪声;不添加全部阶的自适应噪声,而是在中间的某一阶停止,而后使用经典EMD方法。对2个人工信号进行分解,实验证明,EEMDPAN很好地继承了EEMD抑制模态混叠的能力,相比于CEEMDAN,计算量降低至1/3,并且分解结果的低阶成分信号附加噪声更小,高阶成分信号可信度更高。 展开更多
关键词 自适应噪声 集成经验模态分解 噪声 内涵模态函数 互补噪声 附加噪声 信号可信度
下载PDF
结合自适应噪声完备集合经验模态分解的深度学习模型在电离层闪烁预报中的研究
2
作者 尹逊哲 岳东杰 +2 位作者 翟长治 陈雨田 程晓云 《甘肃科学学报》 2024年第1期117-124,共8页
电离层闪烁可能导致通信系统误码率增加和GNSS定位精度下降。由于电离层闪烁的偶发性,闪烁预报非常困难。为了提高对电离层闪烁的预测精度,提出了一种综合多种方法的混合预测模型,利用电离层闪烁标签值(S4label)进行辅助,结合“分解-集... 电离层闪烁可能导致通信系统误码率增加和GNSS定位精度下降。由于电离层闪烁的偶发性,闪烁预报非常困难。为了提高对电离层闪烁的预测精度,提出了一种综合多种方法的混合预测模型,利用电离层闪烁标签值(S4label)进行辅助,结合“分解-集成”思想的深度学习模型进行预测。首先采用CEEMDAN算法将原始数据分解为多个子信号,并基于样本熵指标,使用K-Means算法将这些子信号重构为高频、低频和趋势3种信号。后利用VMD法对高频信号进行二次分解,借助自注意力LSTM模型实现对高低频信号的逐步预测。实验结果表明,与传统的LSTM模型相比,混合模型预测精度明显提高。在地磁平静期,该模型的预测效果得到显著改善,R^(2)、RMSE、MAE、MAPE代表的精度分别提升了32.2%、58.7%、51.2%、44.7%。因此,该模型能更准确地预测电离层闪烁现象的发生,对电离层闪烁的预测研究具有很好的参考价值。 展开更多
关键词 电离层 电离层闪烁预报 自适应噪声完备集合经验模态分解 变分模态分解 深度学习
下载PDF
自适应噪声均值优选集成经验模态分解及其在滚动轴承故障诊断中的应用 被引量:7
3
作者 童靳于 苏缪涎 +3 位作者 郑近德 潘海洋 潘紫微 包家汉 《电子测量与仪器学报》 CSCD 北大核心 2021年第2期41-49,共9页
为了提高自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)的分解能力和分解精度,解决CEEMDAN方法中噪声残留等问题,提出了一种改进的CEEMDAN方法——自适应噪声均值优选集... 为了提高自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)的分解能力和分解精度,解决CEEMDAN方法中噪声残留等问题,提出了一种改进的CEEMDAN方法——自适应噪声均值优选集成经验模态分解(mean-optimized ensemble empirical mode decomposition with adaptive noise, MEEMDAN)。MEEMDAN在迭代筛分过程中引入不同的权重,以正交性指标最小为依据,从不同权重下的分解结果中选取最优模态函数(IMF),确保了每一阶的IMF分量都是整体最优。通过仿真分析验证了MEEMDAN方法在分解能力和分解精度方面优于CEEMDAN方法。同时,将MEEMDAN和最大相关峭度反褶积相结合,并应用于滚动轴承仿真数据和实测数据分析,结果表明,与现有方法相比,所提方法能够更为准确地提取出故障特征频率,且在分解能力和抑制干扰频率方面更具有优越性。 展开更多
关键词 自适应噪声完整集成经验模态分解 经验模态分解 最大相关峭度反褶积 滚动轴承 故障诊断
下载PDF
基于自适应噪声完备经验模态分解−样本熵−长短期记忆神经网络和核密度估计的短期电力负荷区间预测 被引量:19
4
作者 赵会茹 张士营 +2 位作者 赵一航 刘红雨 邱宝红 《现代电力》 北大核心 2021年第2期138-146,共9页
短期电力负荷具有较强的随机性和波动性,其预测的准确性对于提升供电可靠性、电力系统运行经济性至关重要。针对传统确定性预测不能反映未来负荷波动的弊端,基于“点预测+区间估计”的思路提出了一种短期负荷区间预测方法。首先基于自... 短期电力负荷具有较强的随机性和波动性,其预测的准确性对于提升供电可靠性、电力系统运行经济性至关重要。针对传统确定性预测不能反映未来负荷波动的弊端,基于“点预测+区间估计”的思路提出了一种短期负荷区间预测方法。首先基于自适应噪声完备经验模态分解方法将负荷序列分解为多个模态分量,并根据不同序列样本熵的计算结果将序列进行重构以降低运算量。在此基础上,针对每一个分量分别构建长短期记忆神经网络预测模型,得到未来负荷点预测值。基于此利用核密度估计方法对预测误差的分布进行估计,进而结合点预测结果实现未来短期负荷的区间预测。通过将此模型与其他模型进行对比,结果表明此模型能够实现更低的点预测误差,同时在区间预测中也表现出更好的综合性能。 展开更多
关键词 短期负荷预测 自适应噪声完备经验模态分解 长短期记忆神经网络 核密度估计
下载PDF
基于改进完备集成经验模态分解的钢丝绳缺陷漏磁检测方法 被引量:2
5
作者 钟小勇 陈科安 张小红 《工矿自动化》 北大核心 2022年第7期118-124,共7页
钢丝绳小缺陷信号往往被淹没在股波噪声中,存在钢丝绳小缺陷检测困难、易漏检等问题。针对该问题,提出了一种基于改进完备集成经验模态分解(ICEEMD)的钢丝绳缺陷漏磁检测方法。为了避免钢丝绳表面润滑剂或尘埃对检测信号造成影响,采用... 钢丝绳小缺陷信号往往被淹没在股波噪声中,存在钢丝绳小缺陷检测困难、易漏检等问题。针对该问题,提出了一种基于改进完备集成经验模态分解(ICEEMD)的钢丝绳缺陷漏磁检测方法。为了避免钢丝绳表面润滑剂或尘埃对检测信号造成影响,采用电磁检测法。将ICEEMD、小波阈值滤波(WTF)、维纳滤波(WF)相结合,得到ICEEMD-WTF-WF多级降噪方法:通过ICEEMD分解钢丝绳漏磁信号,得到本征模态函数(IMF)分量;计算IMF分量的能量比、排列熵、互相关系数,取出IMF趋势分量和IMF股波噪声分量,并对股波噪声分量进行WTF,筛选有用的IMF分量重构信号;对重构后的信号进行WF,去除随机噪声。提取降噪后的缺陷特征值,输入BP神经网络并进行训练,识别钢丝绳缺陷漏磁信号。实验结果表明:ICEEMD-WTF-WF多级降噪方法对钢丝绳漏磁信号具有良好的降噪效果,信噪比、峭度指标优于WTF、移动平均滤波和WF;基于ICEEMD-WTF-WF的BP神经网络模型检测耗时短,对小缺陷的平均准判率达到98.13%,能较好地满足钢丝绳缺陷检测要求。 展开更多
关键词 钢丝绳 小缺陷检测 漏磁检测 改进完备集成经验模态分解 小波阈值滤波 维纳滤波 多级降噪
下载PDF
采用样本熵自适应噪声完备经验模态分解的脑电信号眼电伪迹去除算法 被引量:14
6
作者 杨磊 杨帆 何艳 《西安交通大学学报》 EI CAS CSCD 北大核心 2020年第8期177-184,共8页
针对脑电(EEG)信号容易被眼电(EOG)伪迹污染,而常规伪迹去除算法会导致EEG有用信息大量丢失的问题,提出一种采用样本熵完备经验模态分解的EOG伪迹去除算法。首先,利用独立成分分析(ICA)算法将EEG分解为独立分量;然后,对各独立分量进行... 针对脑电(EEG)信号容易被眼电(EOG)伪迹污染,而常规伪迹去除算法会导致EEG有用信息大量丢失的问题,提出一种采用样本熵完备经验模态分解的EOG伪迹去除算法。首先,利用独立成分分析(ICA)算法将EEG分解为独立分量;然后,对各独立分量进行样本熵分析,接着引入阈值对伪迹分量进行自动识别,识别后的伪迹分量经过自适应噪声完备经验模态分解(CEEMDAN)算法分解后采用小波阈值降噪;最后采用逆CEEMDAN和逆ICA算法重构信号,达到伪迹去除的目的。采用公开的BCI2000运动想象数据集中60组数据进行实验,结果表明,所提算法的EOG伪迹自动识别正确率达80%,比基于峰度的伪迹识别算法提高约26.7%;采用公开的Klados EEG数据集中15组数据进行实验,结果表明,重构后的EEG信号与纯净的EEG信号的相关系数为0.841,均方根误差较受污染信号降低约56.82%。实验结果证明了所提算法在提高伪迹去除能力的同时能够有效保留有用脑电信息。 展开更多
关键词 脑电图 眼电伪迹 独立成分分析 自适应噪声完备经验模态分解 小波
下载PDF
基于注意力时间卷积网络的农产品期货分解集成预测 被引量:1
7
作者 张大斌 黄均杰 +1 位作者 凌立文 林锐斌 《南京信息工程大学学报》 CAS 北大核心 2024年第3期311-320,共10页
针对农产品期货时间序列数据受多方面因素影响,非线性、非平稳数据特征难以提取而导致预测准确性不高的问题,基于“分解-集成”的预测思想,本文提出一种基于自适应噪声完备经验模态分解(CEEMDAN)与Transformer-Encoder-TCN的农产品期货... 针对农产品期货时间序列数据受多方面因素影响,非线性、非平稳数据特征难以提取而导致预测准确性不高的问题,基于“分解-集成”的预测思想,本文提出一种基于自适应噪声完备经验模态分解(CEEMDAN)与Transformer-Encoder-TCN的农产品期货预测方法.首先,使用CEEMDAN将时间序列分解为多尺度多频率的本征模态分量(IMF)与残差,降低了序列建模复杂度;其次,使用融合多阶段自注意力单元Transformer-Encoder的时间卷积网络(TCN)对各个分量子序列进行特征提取与预测,优化了序列显著特征建模权重;最后,将各个子序列预测值线性相加集成得到最终预测结果.以南华期货公司农产品指数中的大豆期货指数为研究对象,采用时序交叉验证与参数迁移的方式进行模型重训练,消融和对比实验结果表明,提出的新模型在RMSE、MAE和DS三个评价指标上具有良好的效果,验证了该模型对农产品期货预测的有效性. 展开更多
关键词 农产品期货 自适应噪声完备经验模态分解 自注意力机制 Transformer-Encoder 时间卷积网络
下载PDF
基于密度聚类模态分解的卷积神经网络和长短期记忆网络短期风电功率预测
8
作者 崔明勇 董文韬 卢志刚 《现代电力》 北大核心 2024年第4期631-641,共11页
近年来,随着碳达峰和碳中和“双碳”战略目标的提出,风力发电已成为可再生能源发电的关键部分。为提高风电功率短期预测的准确度,提出基于密度聚类与自适应噪声完备集成经验模态分解(complete ensemble empirical mode decomposition wi... 近年来,随着碳达峰和碳中和“双碳”战略目标的提出,风力发电已成为可再生能源发电的关键部分。为提高风电功率短期预测的准确度,提出基于密度聚类与自适应噪声完备集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)和卷积神经网络与长短期记忆网络结合的短期风电功率预测方法。首先,利用密度聚类将风电功率与天气特征分成不同类别的数据集,通过自适应噪声完备集成经验模态分解算法将不同类别的数据进行频域分解得到子序列分量。以此为基础,将不同的子序列分量与天气特征进行特征选择,输入到卷积神经网络与长短期记忆网络的预测模型。最后,将不同的预测结果进行叠加得到最终的预测结果。整个预测过程通过聚类、分解和特征选择,有效提高了短期风电功率预测的准确度。 展开更多
关键词 风电功率预测 密度聚类 自适应噪声完备集成经验模态分解 卷积神经网络 长短期记忆网络
下载PDF
集成经验模态分解与深度学习的用户侧净负荷预测算法 被引量:32
9
作者 刘友波 吴浩 +3 位作者 刘挺坚 杨智宇 刘俊勇 李秋航 《电力系统自动化》 EI CSCD 北大核心 2021年第24期57-64,共8页
随着用户侧分布式能源发电容量增长,配电网净负荷需求预测面临着更大困难。为此,提出一种改进的自适应噪声的完全集成经验模态分解(CEEMDAN)和深度信念网络(DBN)结合的用户侧净负荷预测方法。首先,通过CEEMDAN将原始净负荷数据分解为若... 随着用户侧分布式能源发电容量增长,配电网净负荷需求预测面临着更大困难。为此,提出一种改进的自适应噪声的完全集成经验模态分解(CEEMDAN)和深度信念网络(DBN)结合的用户侧净负荷预测方法。首先,通过CEEMDAN将原始净负荷数据分解为若干个频率、幅值不一的本征模态函数(IMF)。然后,配合机器学习智能算法,使用DBN逐一对各个IMF分量进行特征提取和时序预测。最后,将多个目标预测结果累加得到最终用户侧短期净负荷预测结果。采用某地区实际数据进行算例分析,验证了所提CEEMDAN-DBN独立预测模型与直接预测相比,能够辨识各频率负荷分量特性,提高分布式能源与负荷耦合性增强背景下的负荷预测精度。 展开更多
关键词 净负荷预测 自适应噪声的完全集成经验模态分解 深度信念网络 时序预测
下载PDF
基于CEEMDAN多尺度改进排列熵和SVM的空化噪声特征提取
10
作者 兀成龙 高翰林 +1 位作者 朱丹丹 李亚安 《振动与冲击》 EI CSCD 北大核心 2024年第13期190-197,216,共9页
当水下航行器处于高速航行时就会形成空化噪声,所产生的噪声会严重影响水下航行器的性能和安全。螺旋桨噪声包含着丰富的空化信息,是识别空化状态的有效手段。针对改进排列熵在单尺度下对原信号进行分析,无法有效区分不同空化状态,提出... 当水下航行器处于高速航行时就会形成空化噪声,所产生的噪声会严重影响水下航行器的性能和安全。螺旋桨噪声包含着丰富的空化信息,是识别空化状态的有效手段。针对改进排列熵在单尺度下对原信号进行分析,无法有效区分不同空化状态,提出了将改进排列熵与自适应噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)相结合的空化噪声特征提取方法。首先,采用CEEMDAN方法对水下航行器螺旋桨的空化噪声进行分解,提取具有空化特征的固有模态函数(intrinsic mode function, IMF)分量;其次,选取相关系数最高的IMF分量并计算其多尺度改进排列熵(multi-scale improved permutation entropy, MIPE);最后,基于多尺度改进排列熵,建立支持向量机的特征分类模型。仿真和试验结果表明,该方法具有更好的可分性。 展开更多
关键词 多尺度改进排列熵(MIPE) 自适应噪声完备经验模态分解(CEEMDAN) 空化噪声 特征提取
下载PDF
基于自适应时序分解筛选的大坝变形预测模型
11
作者 谷宇 苏怀智 +3 位作者 张帅 姚可夫 刘明凯 漆一宁 《水利学报》 EI CSCD 北大核心 2024年第9期1045-1057,1070,共14页
高精度的大坝变形分析和预测是掌握大坝工作性态、诊断大坝异常的重要手段。针对现有模型信息特征挖掘不充分、泛化能力弱、难以实现精准预测等问题,采用灰狼算法优化自适应噪声完备经验模态分解解决多维参数标定问题,使用阈值评价指标... 高精度的大坝变形分析和预测是掌握大坝工作性态、诊断大坝异常的重要手段。针对现有模型信息特征挖掘不充分、泛化能力弱、难以实现精准预测等问题,采用灰狼算法优化自适应噪声完备经验模态分解解决多维参数标定问题,使用阈值评价指标保留变形时序数据的有效信息特征;引入交叉验证的递归特征选择法通过多个学习器综合筛选出最优因子集,移除冗余特征、提取有效信息并增强模型可解释性;考虑时序数据特性优化双向长短期记忆神经网络时间窗步数,结合大坝变形数据降噪、最优特征因子输入等多种方法,构建大坝变形预测模型。以实际工程为例,结合多种预测模型进行对比分析,结果表明该模型具备挖掘非线性信息能力,预测性能得到改善,可为大坝安全监测提供参考。 展开更多
关键词 大坝变形预测 灰狼算法 阈值降噪 双向长短期记忆神经网络 自适应噪声完备经验模态分解
下载PDF
基于改进经验模态分解和支持向量机的短期风速组合预测 被引量:8
12
作者 韩世浩 孙树敏 +4 位作者 程艳 王士柏 吕志超 赵志澎 邵泰衡 《科学技术与工程》 北大核心 2019年第36期172-178,共7页
为更精确地进行风速预测,提出一种利用带自适应噪声的完全集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)方法和蝙蝠算法(bat algorithm,BA)优化支持向量机(support vector machine,S... 为更精确地进行风速预测,提出一种利用带自适应噪声的完全集成经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)方法和蝙蝠算法(bat algorithm,BA)优化支持向量机(support vector machine,SVM)的组合短期风速预测方法。首先用CEEMDAN对原始风速时间序列进行分解,得到一系列不同频率的子序列;其次,使用BA-SVM组合模型预测对分解后的各个子序列分别进行预测;最后,将各子序列的预测结果叠加得到风速预测值。仿真结果表明,该模型提高了预测精度,减小了误差。 展开更多
关键词 风速预测 自适应噪声的完全集成经验模态分解(CEEMDAN) 蝙蝠算法 支持向量机 组合模型
下载PDF
基于状态划分和集成学习的轴承剩余使用寿命预测模型
13
作者 胡志辉 王绪光 +2 位作者 王贡献 张腾 李帅琦 《机电工程》 CAS 北大核心 2024年第8期1423-1430,共8页
针对滚动轴承剩余使用寿命(RUL)预测退化起始时间(DST)难以确定,以及单一寿命预测模型精度比较低的问题,提出了一种基于状态划分和集成学习模型的滚动轴承RUL预测方法。首先,提取了轴承振动信号的特征,利用滑动窗口不断更新3σ准则预警... 针对滚动轴承剩余使用寿命(RUL)预测退化起始时间(DST)难以确定,以及单一寿命预测模型精度比较低的问题,提出了一种基于状态划分和集成学习模型的滚动轴承RUL预测方法。首先,提取了轴承振动信号的特征,利用滑动窗口不断更新3σ准则预警范围,结合连续触发机制自适应确定DST;然后,采用具有自适应噪声的完全集成经验模态分解(CEEMDAN)对退化阶段信号序列进行了自适应分解;最后,构建了集成学习模型,考虑分量的不同特性进行了多步滚动预测,融合预测结果得到了轴承RUL,采用滚动轴承XJTU-SY公开数据集进行了试验验证。研究结果表明:与基于长短时记忆神经网络(LSTM)、反向传播神经网络(BPNN)的预测方法相比,该方法预测结果的平均绝对误差分别降低了11.7%以及5.6%,相对均方根误差分别降低了12.2%以及10.7%,验证了该方法在轴承RUL预测中的有效性和优越性。 展开更多
关键词 滚动轴承剩余使用寿命 退化起始时间 自适应DST状态划分 集成学习模型 退化特征提取 具有自适应噪声的完全集成经验模态分解 长短时记忆神经网络
下载PDF
基于ICEEMDAN和分布熵的SS-Y伸缩仪信号随机噪声压制方法
14
作者 吴林斌 《大地测量与地球动力学》 CSCD 北大核心 2024年第4期429-435,共7页
结合改进的自适应噪声完备集合经验模态分解(ICEEMDAN)与分布熵(DistEn),提出一种无需自定义算法参数、去噪效果较好的伸缩仪信号随机噪声压制方法。首先将伸缩仪信号进行ICEEMDAN处理,得到若干个本征模态函数(IMF);然后计算各IMF分量... 结合改进的自适应噪声完备集合经验模态分解(ICEEMDAN)与分布熵(DistEn),提出一种无需自定义算法参数、去噪效果较好的伸缩仪信号随机噪声压制方法。首先将伸缩仪信号进行ICEEMDAN处理,得到若干个本征模态函数(IMF);然后计算各IMF分量的分布熵值,根据不同分布熵值的大小和表征的分量信号混乱程度,有针对性地对各IMF进行取舍;最后进行线性重构。设计仿真信号去噪实验和SS-Y伸缩仪信号去噪实验,结果表明,基于ICEEMDAN-DistEn去噪模型的伸缩仪信号重构还原度较好,去噪效果显著,明显优于CEEMDAN-DistEn、小波去噪和卡尔曼滤波等去噪模型。 展开更多
关键词 SS-Y伸缩仪 随机噪声压制 改进的自适应噪声完备集合经验模态分解 分布熵 信噪比
下载PDF
基于小波包分解与CEEMDAN能量熵的水电机组振动信号特征提取
15
作者 王淑青 罗平章 +2 位作者 胡文庆 柯洋洋 张家豪 《水电能源科学》 北大核心 2024年第6期198-202,216,共6页
针对水电机组振动信号非平稳、非线性及噪声问题,提出一种基于自适应噪声完备经验模态分解(CEEMDAN)与能量熵结合的特征提取方法,首先对采集的振动信号进行小波包降噪处理,然后对降噪后信号进行CEEMDAN分解,运用相关系数法筛选有效固有... 针对水电机组振动信号非平稳、非线性及噪声问题,提出一种基于自适应噪声完备经验模态分解(CEEMDAN)与能量熵结合的特征提取方法,首先对采集的振动信号进行小波包降噪处理,然后对降噪后信号进行CEEMDAN分解,运用相关系数法筛选有效固有模态函数(IMF)并计算其能量熵,由此构建特征向量集,最后将其输入到海洋捕食者优化支持向量机算法(MPA-SVM)进行模式识别。基于模拟信号、实测信号验证所提特征提取方法的有效性,并与其他方法作对比。结果表明,基于小波包分解与CEEMDAN能量熵的特征提取方法能准确提取特征,有效区分机组不同状态,为工程领域提供了应用价值。 展开更多
关键词 水电机组 振动信号 小波包分解 自适应噪声完备经验模态分解 能量熵 特征提取
下载PDF
基于ICEEMDAN分解与SE重构和DBO-LSTM的滑坡位移预测 被引量:1
16
作者 封青青 李丽敏 +2 位作者 陈飞阳 张碧涵 余兵 《电子测量技术》 北大核心 2024年第7期80-87,共8页
滑坡位移预测是防灾减灾的一项重要工作,针对位移分解后趋势项和周期项重构的合理性问题以及周期项位移预测精度不高的问题,提出了一种改进的自适应噪声完备集合经验模态分解(ICEEMDAN)、样本熵(SE)以及蜣螂算法(DBO)优化的长短期记忆网... 滑坡位移预测是防灾减灾的一项重要工作,针对位移分解后趋势项和周期项重构的合理性问题以及周期项位移预测精度不高的问题,提出了一种改进的自适应噪声完备集合经验模态分解(ICEEMDAN)、样本熵(SE)以及蜣螂算法(DBO)优化的长短期记忆网络(LSTM)组合模型进行位移预测。以八字门滑坡为研究对象,利用ICEEMDAN方法将滑坡累计位移进行分解,并用样本熵值表征分解得到的子序列,将其重构为趋势项和周期项位移。之后利用LSTM模型预测趋势项和周期项位移;通过灰色关联度的方法确定周期项位移的影响因素。考虑到LSTM网络中超参数的随机性会影响模型预测精度,引入蜣螂优化算法获取LSTM最优超参数,最终将预测得到的趋势项和周期项位移叠加得到累计位移。本文所提的ICEEMDAN-SE-DBO-LSTM模型预测周期项位移的RMSE、MAE、R23项指标分别为1.803 mm、1.584 mm、0.988,相较于DBO-BP,LSTM,GRU和BP模型预测效果更优,证明了模型的有效性。 展开更多
关键词 滑坡位移 改进的自适应噪声完备集合经验模态分解 样本熵 蜣螂优化算法
下载PDF
基于校准窗口集成与耦合市场特征的可解释双层日前电价预测
17
作者 刘慧鑫 沈晓东 +3 位作者 魏泽涛 刘友波 刘俊勇 白元宝 《中国电机工程学报》 EI CSCD 北大核心 2024年第4期1272-1285,I0003,共15页
随着电力市场之间耦合程度不断加深,只局限于单个市场内部的传统特征集不足以支撑高精度预测的需求。而且模型预测性能对校准窗口的选择敏感,而传统电价预测仅使用一个固定时间长度的数据集,同时预测模型的“黑盒”结构导致预测结果在... 随着电力市场之间耦合程度不断加深,只局限于单个市场内部的传统特征集不足以支撑高精度预测的需求。而且模型预测性能对校准窗口的选择敏感,而传统电价预测仅使用一个固定时间长度的数据集,同时预测模型的“黑盒”结构导致预测结果在工程应用中可信度偏低。针对上述问题,该文提出一种考虑校准窗口集成与耦合市场特征的可解释双层日前电价预测框架。内层框架为基于改进自适应噪声完备集合经验模态分解(improved complete ensemble empirical mode decomposition,ICEEMDAN)的择优预测,首先分解原始电价序列,然后应用Lasso估计回归(lassoestimated autoregressive,LEAR)、长期和短期时间序列网络(long-term and short-term time-series networks,LSTNet)、卷积神经网络-长短记忆神经网络(convolutionalneuralnetworks-longshort termmemory,CNN-LSTM)、移动平均(autoregressive integrated moving average,ARIMA)和核极限学习机(kernel extreme learning machines,KELM)模型预测子序列并选择最优预测算法。外层框架为基于贝叶斯模型平均(bayes modelaveraging,BMA)的校准窗口集成预测,针对每个不同校准窗口长度数据集下的预测分配权重并集成得到预测电价。最后,通过可解释方法沙普利加性解释模型(shapley additiveexplanations,SHAP)分析耦合市场特征如何影响预测电价。该文通过北欧电力市场数据集的算例分析证明了所提算法的优越性和校准窗口集成方案的有效性。 展开更多
关键词 校准窗口集成 耦合市场特征 双层预测框架 改进自适应噪声完备集合经验模态分解(ICEEMDAN) 贝叶斯模型平均(BMA) 沙普利加性解释模型(SHAP)
下载PDF
基于二次分解和JSO-TCN模型的短期光伏功率预测
18
作者 钟璐 杨华 +4 位作者 李世林 亢丽君 马光文 朱燕梅 黄炜斌 《水力发电》 CAS 2024年第11期74-80,105,共8页
针对光伏功率数据稳定性低、波动性大以及通过单一模型难以全面捕捉信号非线性特征的问题,提出了一种基于二次分解和JSO-TCN模型的光伏预测模型。该模型首先通过自适应噪声完备集合经验模态分解(CEEMDAN)对实际光伏功率数据进行分解;然... 针对光伏功率数据稳定性低、波动性大以及通过单一模型难以全面捕捉信号非线性特征的问题,提出了一种基于二次分解和JSO-TCN模型的光伏预测模型。该模型首先通过自适应噪声完备集合经验模态分解(CEEMDAN)对实际光伏功率数据进行分解;然后分别计算各分量的样本熵,并通过K-means++聚类为高频、中频和低频3个分量,再利用变分模态分解(VMD)对熵值最高的模态分量进行二次分解;最终将处理后的数据输入到时序卷积网络(TCN)中并采用水母优化算法(JSO)对TCN进行参数优选。以西南地区某光伏电站为例,相比于其他模型,本模型在3类指标上均具有优势,决定系数(R 2)为98.29%、平均绝对误差(MAE)为0.481 MW、均方根误差(RMSE)为0.674 MW。由此可知,基于二次分解和JSO-TCN模型预测精度高、误差小,能够为该地区电网调度提供参考。 展开更多
关键词 光伏功率 预测 自适应噪声完备集合经验模态分解 变分模态分解 样本熵 K-means++聚类 水母优化算法 时序卷积网络
下载PDF
基于CEEMDAN-WP-SSA的GPS/BDS-RTK多路径噪声抑制方法
19
作者 孔令伟 王振杰 +1 位作者 聂志喜 张远帆 《测绘工程》 2024年第6期25-32,共8页
针对GNSS-RTK技术在复杂环境下的多路径效应误差和随机噪声难以消除的问题,提出一种自适应完备集合经验模态分解(CEEMDAN)、小波包(WP)去噪和奇异谱分析(SSA)结合的联合去噪方法,来消除基线坐标序列的噪声影响,在此基础上构建适用于GPS/... 针对GNSS-RTK技术在复杂环境下的多路径效应误差和随机噪声难以消除的问题,提出一种自适应完备集合经验模态分解(CEEMDAN)、小波包(WP)去噪和奇异谱分析(SSA)结合的联合去噪方法,来消除基线坐标序列的噪声影响,在此基础上构建适用于GPS/BDS组合的恒星日滤波模型。首先采用CEEMDAN方法将原始信号分解成若干个特征模态函数(IMF),使用排列熵区分高频和低频分量,然后分别利用WP和SSA对高频信号和低频信号进行去噪,最后重构去噪后信号并通过恒星日滤波削弱后续坐标序列里的多路径误差。实验结果表明,基于CEEMDAN-WP-SSA构建的恒星日滤波模型能够很好的去除随机噪声以及削弱多路径误差影响,与CEEMDAN和CEEMDAN-WP方法相比,文中方法东(E)、北(N)、高程(U)3个方向的定位精度分别提升约17%、23.6%、13.6%和17%、19.8%、10%。 展开更多
关键词 全球导航卫星系统实时动态差分定位 自适应完备集合经验模态分解 奇异谱分析 恒星日滤波 多路径效应误差 随机噪声
下载PDF
基于CEEMDAN和改进轻量化时空网络的刀具状态监测
20
作者 周鹏博 刘德平 《组合机床与自动化加工技术》 北大核心 2024年第3期177-181,186,共6页
针对刀具退化特征提取困难和传统时空网络模型参数多等问题,提出了基于自适应噪声完备经验模态分解(CEEMDAN)和改进轻量化时空网络(BiLSTM-SN-ECA)的刀具磨损监测模型。首先,将刀具振动信号经CEEMADAN分解得到若干模态分量,将模态分量... 针对刀具退化特征提取困难和传统时空网络模型参数多等问题,提出了基于自适应噪声完备经验模态分解(CEEMDAN)和改进轻量化时空网络(BiLSTM-SN-ECA)的刀具磨损监测模型。首先,将刀具振动信号经CEEMADAN分解得到若干模态分量,将模态分量与振动信号结合,构造特征矩阵;其次,利用ECA改进ShuffleNetv2基本单元,并优化ShuffleNetv2整体结构,构造BiLSTM-SN-ECA网络模型;最后,将特征矩阵输入模型进行特征学习与磨损预测。所提方法预测值的平均绝对误差和均方根误差分别为1.246μm和2.065μm,结果表明该方法在减少传统时空网络模型参数量与训练时间的同时,提高了预测准确度。 展开更多
关键词 刀具磨损监测 自适应噪声完备经验模态分解 轻量化时空网络 注意力机制
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部