期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于新迭代规则的稀疏CNMF人脸识别方法
被引量:
7
1
作者
周静
黄心汉
《华中科技大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2018年第12期48-54,共7页
针对凸非负矩阵分解(CNMF)人脸识别方法的运行时间长且识别率不高的问题,提出一种可收敛的易于计算的新目标函数,并引入阈值稀疏约束,得到新的迭代规则,可有效提高识别率和减少计算时间.首先,图像经预处理后得到低频训练样本,经由新迭...
针对凸非负矩阵分解(CNMF)人脸识别方法的运行时间长且识别率不高的问题,提出一种可收敛的易于计算的新目标函数,并引入阈值稀疏约束,得到新的迭代规则,可有效提高识别率和减少计算时间.首先,图像经预处理后得到低频训练样本,经由新迭代规则的稀疏凸非负矩阵方法分解,得到特征的稀疏基矩阵和权值系数矩阵;然后,基于稀疏特征基矩阵对测试样本进行分解,得到测试集的特征权值系数矩阵;最后,使用一对一支持向量机对该特征权值系数矩阵进行识别分类.基于新规则的稀疏化基矩阵数据更为集中,因此相应系数矩阵中特征的权值也更为集中,易于进行分类识别.实验结果表明:基于新迭代规则的稀疏CNMF方法的识别率可达到100%,比凸非负矩阵分解、稀疏非负矩阵分解、多层非负矩阵分解方法分别提高了33.0%,10.0%和5.5%,并且识别时间更短,图像重构误差更小.
展开更多
关键词
人脸识别
新目标函数
改进的迭代规则
基矩阵稀疏
非负矩阵分解
支持向量机
原文传递
题名
基于新迭代规则的稀疏CNMF人脸识别方法
被引量:
7
1
作者
周静
黄心汉
机构
江汉大学数学与计算机科学学院
华中科技大学自动化学院
出处
《华中科技大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2018年第12期48-54,共7页
基金
国家自然科学基金资助项目(71601085)
湖北省高校省级教学研究项目(2017301)
文摘
针对凸非负矩阵分解(CNMF)人脸识别方法的运行时间长且识别率不高的问题,提出一种可收敛的易于计算的新目标函数,并引入阈值稀疏约束,得到新的迭代规则,可有效提高识别率和减少计算时间.首先,图像经预处理后得到低频训练样本,经由新迭代规则的稀疏凸非负矩阵方法分解,得到特征的稀疏基矩阵和权值系数矩阵;然后,基于稀疏特征基矩阵对测试样本进行分解,得到测试集的特征权值系数矩阵;最后,使用一对一支持向量机对该特征权值系数矩阵进行识别分类.基于新规则的稀疏化基矩阵数据更为集中,因此相应系数矩阵中特征的权值也更为集中,易于进行分类识别.实验结果表明:基于新迭代规则的稀疏CNMF方法的识别率可达到100%,比凸非负矩阵分解、稀疏非负矩阵分解、多层非负矩阵分解方法分别提高了33.0%,10.0%和5.5%,并且识别时间更短,图像重构误差更小.
关键词
人脸识别
新目标函数
改进的迭代规则
基矩阵稀疏
非负矩阵分解
支持向量机
Keywords
face recognition
new object function
improved iteration rule
basic matrix sparse
nonnegative matrix factorization
support vector machines
分类号
TP391.41 [自动化与计算机技术—计算机应用技术]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于新迭代规则的稀疏CNMF人脸识别方法
周静
黄心汉
《华中科技大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2018
7
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部