实现对遥感噪声图像的有效复原是遥感图像处理的一项重要研究内容。在对非负支撑域有限递归逆滤波(non-negativity and support constraints recursive inverse filtering,NAS-RIF)算法深入研究的基础上,提出一种基于改进自适应NAS-RIF...实现对遥感噪声图像的有效复原是遥感图像处理的一项重要研究内容。在对非负支撑域有限递归逆滤波(non-negativity and support constraints recursive inverse filtering,NAS-RIF)算法深入研究的基础上,提出一种基于改进自适应NAS-RIF算法的遥感噪声图像复原方法。该算法针对经典NAS-RIF算法存在的缺陷,首先对含有椒盐噪声和高斯白噪声的遥感图像采用自适应伪中值滤波算法进行预处理,以尽可能排除图像中噪声的干扰;然后结合图像的灰度值,从算法支撑域和背景灰度值2个方面加以改进;最后对代价函数引入基于目标信息的修正项,改进了经典NAS-RIF算法的代价函数;与对数函数复合,使得改进后NAS-RIF算法的代价函数具有良好的收敛性;并采用共轭梯度法对改进自适应NAS-RIF算法进行整体优化。对仿真实验结果进行的主观和客观分析表明,本文算法的性能优于经典NAS-RIF算法、已有的改进NAS-RIF算法以及小波阈值去噪方法,能够胜任遥感噪声图像的复原处理。展开更多
当噪声水平升高时,现有的噪声估计算法存在跟踪时延和估计不准确的问题,为提高噪声估计的准确性,对改进的最小值控制的递归平均噪声估计算法(improved minima controlled recursive averaging,IMCRA)中的最小值搜索方法进行改进,利用连...当噪声水平升高时,现有的噪声估计算法存在跟踪时延和估计不准确的问题,为提高噪声估计的准确性,对改进的最小值控制的递归平均噪声估计算法(improved minima controlled recursive averaging,IMCRA)中的最小值搜索方法进行改进,利用连续最小值跟踪算法取代最小值统计算法,打破求解最小值受窗长影响的现状,减少跟踪时延;提出一种基于语音存在概率的偏差补偿函数模型,偏差补偿的大小由各个频带决定。实验结果表明,不管是平稳还是非平稳噪声环境,改进后的算法都能有效提高增强后语音的质量。展开更多
文摘实现对遥感噪声图像的有效复原是遥感图像处理的一项重要研究内容。在对非负支撑域有限递归逆滤波(non-negativity and support constraints recursive inverse filtering,NAS-RIF)算法深入研究的基础上,提出一种基于改进自适应NAS-RIF算法的遥感噪声图像复原方法。该算法针对经典NAS-RIF算法存在的缺陷,首先对含有椒盐噪声和高斯白噪声的遥感图像采用自适应伪中值滤波算法进行预处理,以尽可能排除图像中噪声的干扰;然后结合图像的灰度值,从算法支撑域和背景灰度值2个方面加以改进;最后对代价函数引入基于目标信息的修正项,改进了经典NAS-RIF算法的代价函数;与对数函数复合,使得改进后NAS-RIF算法的代价函数具有良好的收敛性;并采用共轭梯度法对改进自适应NAS-RIF算法进行整体优化。对仿真实验结果进行的主观和客观分析表明,本文算法的性能优于经典NAS-RIF算法、已有的改进NAS-RIF算法以及小波阈值去噪方法,能够胜任遥感噪声图像的复原处理。
文摘当噪声水平升高时,现有的噪声估计算法存在跟踪时延和估计不准确的问题,为提高噪声估计的准确性,对改进的最小值控制的递归平均噪声估计算法(improved minima controlled recursive averaging,IMCRA)中的最小值搜索方法进行改进,利用连续最小值跟踪算法取代最小值统计算法,打破求解最小值受窗长影响的现状,减少跟踪时延;提出一种基于语音存在概率的偏差补偿函数模型,偏差补偿的大小由各个频带决定。实验结果表明,不管是平稳还是非平稳噪声环境,改进后的算法都能有效提高增强后语音的质量。