SWISS整流器因其优越的性能被广泛应用于充电桩、分布式直流电源等场合。其首要的控制目标是维持稳定的直流侧输出电压、正弦且对称的交流侧三相电流以及网侧单位功率因数。然而,当电网出现幅值跌落时,基于传统的控制方法很难同时实现上...SWISS整流器因其优越的性能被广泛应用于充电桩、分布式直流电源等场合。其首要的控制目标是维持稳定的直流侧输出电压、正弦且对称的交流侧三相电流以及网侧单位功率因数。然而,当电网出现幅值跌落时,基于传统的控制方法很难同时实现上述3个控制目标。因此,该文分别提出适用于电网幅值跌落的输出电压恒定控制(constant output voltage control,COVC)方法和电流正弦对称控制(sinusoidal and symmetrical current control,SSCC)方法。前者可实现直流侧输出电压恒定无波动,但无法实现网侧电流的正弦且对称。后者可实现网侧电流正弦且对称,但无法实现直流侧电压输出恒定无波动。在此基础上,该文结合这2种控制方法的优势进一步提出一种改进的协调优化控制(improved coordination and optimization control,ICOC)方法,可实现网侧处于单位功率因数的同时,在直流侧输出电压恒定无波动和网侧电流正弦且对称之间进行协调优化,实验结果证明ICOC方法相较于COVC和SSCC具有显著的优势,与该文的理论分析一致。展开更多
为实现中低压直流互联场景中串并联直流固态变压器的高效传输和灵活调压,组合CLLLC变换器模块和Buck/Boost-CLLLC变换器模块形成新的混合型串并联双向直流固态变压器(hybrid series-parallel bi-directional DC solid state transformer...为实现中低压直流互联场景中串并联直流固态变压器的高效传输和灵活调压,组合CLLLC变换器模块和Buck/Boost-CLLLC变换器模块形成新的混合型串并联双向直流固态变压器(hybrid series-parallel bi-directional DC solid state transformer, HSBDCSST),使其兼具Buck/Boost-CLLLC变换器的双向灵活调压和CLLLC变换器的双向高效传输优势。同时提出了CLLLC模块的同步方波控制和Buck/Boost-CLLLC模块的改进虚拟直流电机(improvement virtual direct current motor, IVDCM)控制。其中各CLLLC模块采用同一个固定频率占空比为50%的方波进行控制以保证高效率。而对于Buck/Boost-CLLLC模块,在传统虚拟直流电机(virtual direct current motor,VDCM)控制的基础上引入直流电机额定角速度随机械功率按比例变化的环节,构成IVDCM控制策略,实现调压并改善直流变压器的惯性阻尼特性,有效提高了系统的响应速度与动态特性。最后搭建3模块串并联系统的Matlab/Simulink仿真模型及实验平台,验证了该控制方法的有效性。展开更多
文摘SWISS整流器因其优越的性能被广泛应用于充电桩、分布式直流电源等场合。其首要的控制目标是维持稳定的直流侧输出电压、正弦且对称的交流侧三相电流以及网侧单位功率因数。然而,当电网出现幅值跌落时,基于传统的控制方法很难同时实现上述3个控制目标。因此,该文分别提出适用于电网幅值跌落的输出电压恒定控制(constant output voltage control,COVC)方法和电流正弦对称控制(sinusoidal and symmetrical current control,SSCC)方法。前者可实现直流侧输出电压恒定无波动,但无法实现网侧电流的正弦且对称。后者可实现网侧电流正弦且对称,但无法实现直流侧电压输出恒定无波动。在此基础上,该文结合这2种控制方法的优势进一步提出一种改进的协调优化控制(improved coordination and optimization control,ICOC)方法,可实现网侧处于单位功率因数的同时,在直流侧输出电压恒定无波动和网侧电流正弦且对称之间进行协调优化,实验结果证明ICOC方法相较于COVC和SSCC具有显著的优势,与该文的理论分析一致。
文摘为实现中低压直流互联场景中串并联直流固态变压器的高效传输和灵活调压,组合CLLLC变换器模块和Buck/Boost-CLLLC变换器模块形成新的混合型串并联双向直流固态变压器(hybrid series-parallel bi-directional DC solid state transformer, HSBDCSST),使其兼具Buck/Boost-CLLLC变换器的双向灵活调压和CLLLC变换器的双向高效传输优势。同时提出了CLLLC模块的同步方波控制和Buck/Boost-CLLLC模块的改进虚拟直流电机(improvement virtual direct current motor, IVDCM)控制。其中各CLLLC模块采用同一个固定频率占空比为50%的方波进行控制以保证高效率。而对于Buck/Boost-CLLLC模块,在传统虚拟直流电机(virtual direct current motor,VDCM)控制的基础上引入直流电机额定角速度随机械功率按比例变化的环节,构成IVDCM控制策略,实现调压并改善直流变压器的惯性阻尼特性,有效提高了系统的响应速度与动态特性。最后搭建3模块串并联系统的Matlab/Simulink仿真模型及实验平台,验证了该控制方法的有效性。