期刊文献+
共找到184,086篇文章
< 1 2 250 >
每页显示 20 50 100
基于改进的K-means聚类分区均匀化空间学习索引
1
作者 傅晨华 张丰 +1 位作者 胡林舒 王立君 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2024年第2期153-161,195,共10页
传统空间索引的体量随数据量的增加而膨胀,查询效率较低。学习索引的体量不随数据量的增加而膨胀,同时避免了层级比较查询,性能优异。将学习索引应用于空间索引存在2个难点:一是选取合适的降维方法实现空间数据的排序;二是对降维后数据... 传统空间索引的体量随数据量的增加而膨胀,查询效率较低。学习索引的体量不随数据量的增加而膨胀,同时避免了层级比较查询,性能优异。将学习索引应用于空间索引存在2个难点:一是选取合适的降维方法实现空间数据的排序;二是对降维后数据序列进行有效的简化分布计算,使其易于拟合。基于此,提出了一种网格混合聚类分区学习索引(grid-ml),用z曲线进行降维,用双层网格结构优化查询策略,用改进的K-means聚类算法进行数据分区,实现数据分布均匀化。对比实验发现,grid-ml构建速度快、存储空间小、查询效率高,较传统空间索引优势显著。 展开更多
关键词 学习索引 k-means聚类 空间填充曲线 空间索引
下载PDF
基于改进的K-means聚类算法的分类评价方法 被引量:6
2
作者 陈德军 罗金成 张兵 《武汉理工大学学报(信息与管理工程版)》 CAS 2011年第1期32-35,共4页
针对学术期刊运行与管理中对审稿专家缺乏准确评价依据的问题,结合评价分析的需求和K-means聚类算法特点,提出了一种基于改进的K-means聚类算法的审稿专家分类评价方法,该方法通过研究初始聚类中心的选择和评价标准的量化、聚类维度的... 针对学术期刊运行与管理中对审稿专家缺乏准确评价依据的问题,结合评价分析的需求和K-means聚类算法特点,提出了一种基于改进的K-means聚类算法的审稿专家分类评价方法,该方法通过研究初始聚类中心的选择和评价标准的量化、聚类维度的选择和分类值大小的合理选择等问题,较为准确地解决了审稿专家的分类问题。经实例分析验证,该方法得到的结果是合理的,并具有很强的可操作性,为建立科学的审稿专家库和准确高质量地送审提供了科学的依据。 展开更多
关键词 改进的k-means算法 聚类分析 审稿专家分类
下载PDF
改进的K-means网络入侵检测算法 被引量:2
3
作者 程晓旭 于海涛 李梓 《智能计算机与应用》 2012年第2期21-23,共3页
针对K-means算法对于初始聚类中心选择敏感问题,提出了一种改进的K-means算法,该算法优化了聚类中心选择问题,能够获得全局最优的聚类划分,同时减少了算法的时间复杂度。实验结果表明,采用本文的算法进行网络入侵检测,相对于经典的聚类... 针对K-means算法对于初始聚类中心选择敏感问题,提出了一种改进的K-means算法,该算法优化了聚类中心选择问题,能够获得全局最优的聚类划分,同时减少了算法的时间复杂度。实验结果表明,采用本文的算法进行网络入侵检测,相对于经典的聚类算法,能获得理想的网络入侵检测率和网络误报率。 展开更多
关键词 改进的k-means 初始聚类中心 入侵检测
下载PDF
一种改进的k-means初始聚类中心选取算法 被引量:93
4
作者 韩凌波 王强 +1 位作者 蒋正锋 郝志强 《计算机工程与应用》 CSCD 北大核心 2010年第17期150-152,共3页
在传统的k-means聚类算法中,聚类结果会随着初始聚类中心点的不同而波动,针对这个缺点,提出一种优化初始聚类中心的算法。该算法通过计算每个数据对象的密度参数,然后选取k个处于高密度分布的点作为初始聚类中心。实验表明,在聚类类别... 在传统的k-means聚类算法中,聚类结果会随着初始聚类中心点的不同而波动,针对这个缺点,提出一种优化初始聚类中心的算法。该算法通过计算每个数据对象的密度参数,然后选取k个处于高密度分布的点作为初始聚类中心。实验表明,在聚类类别数给定的情况下,通过用标准的UCI数据库进行实验比较,发现采用改进后方法选取的初始类中心的k-means算法比随机选取初始聚类中心算法有相对较高的准确率和稳定性。 展开更多
关键词 k-means算法 聚类中心 密度参数
下载PDF
一种改进的K-means算法 被引量:73
5
作者 张玉芳 毛嘉莉 熊忠阳 《计算机应用》 CSCD 北大核心 2003年第8期31-33,60,共4页
聚类分析在科研和商业应用中都有着非常重要的应用,K means算法是聚类方法中常用的一种划分方法。随着数据量的增加,K means算法的局限性日益突出。基于取样的划分思想,提出了一种改进的K means算法,在一定程度上避免了聚类结果陷入局... 聚类分析在科研和商业应用中都有着非常重要的应用,K means算法是聚类方法中常用的一种划分方法。随着数据量的增加,K means算法的局限性日益突出。基于取样的划分思想,提出了一种改进的K means算法,在一定程度上避免了聚类结果陷入局部解的现象,减少了原始K means算法因采用误差平方和准则函数而出现将大的聚类簇分割开的情况,仿真实验结果表明:改进后的K means算法优于原始算法,并且稳定性更好。 展开更多
关键词 聚类 k-means算法 误差平方和准则函数
下载PDF
基于改进的K-means算法的关联规则数据挖掘研究 被引量:35
6
作者 李珺 刘鹤 朱良宽 《小型微型计算机系统》 CSCD 北大核心 2021年第1期15-19,共5页
关联规则是数据挖掘中的概念,通过分析数据找到数据之间的关联.海量数据会产生大量冗余和相似的关联规则,影响用户对规则的理解和判断.本文采用鸢尾花数据集进行实验.建立三个检验指标,删除冗余关联规则;在进行K-means分析时利用规则产... 关联规则是数据挖掘中的概念,通过分析数据找到数据之间的关联.海量数据会产生大量冗余和相似的关联规则,影响用户对规则的理解和判断.本文采用鸢尾花数据集进行实验.建立三个检验指标,删除冗余关联规则;在进行K-means分析时利用规则产生的三角形迭代选择初始点,再将删除冗余后的规则进行聚类.实验证实本文方法将相似的关联规则归为一簇,能有效的帮助用户迅速找到有用的关联规则,有助于用户更好的对规则进行理解和分析,提高了聚类的效率. 展开更多
关键词 k-means算法 关联规则 聚类算法 鸢尾花数据集
下载PDF
基于一种改进的K-means算法的校园网用户行为分析研究 被引量:9
7
作者 皇甫大鹏 陈平 王兴建 《广西大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第A01期69-72,共4页
随着师生对网络流量需求的迅速增长,如何合理的增加用户的流量,既能满足用户的基本上网需求,又能合理利用出口带宽。本文基于一种改进的K-means聚类算法,以校园网用户的行为特征为对象进行聚类,为优化用户计费策略和合理的分配出口带宽... 随着师生对网络流量需求的迅速增长,如何合理的增加用户的流量,既能满足用户的基本上网需求,又能合理利用出口带宽。本文基于一种改进的K-means聚类算法,以校园网用户的行为特征为对象进行聚类,为优化用户计费策略和合理的分配出口带宽提供了数据依据,为校园网用户个性化需求方面提供理论依据。 展开更多
关键词 用户行为 聚类算法 k-means
下载PDF
一种改进的k-means文档聚类初值选择算法 被引量:23
8
作者 刘远超 王晓龙 刘秉权 《高技术通讯》 CAS CSCD 北大核心 2006年第1期11-15,共5页
提出了一种改进的基于最小最大原则的k-means文档聚类初始值选择算法。该方法首先构造相似度矩阵,然后利用最小最大原则对相似度矩阵进行分析,从而选择初始聚点并自动确定聚类k值。实验结果表明利用该方法找到的k值比较接近真实值。
关键词 文档聚类 k-means 最小最大原则 相似度矩阵
下载PDF
基于改进的k-means差分隐私保护方法在位置隐私保护中的应用 被引量:3
9
作者 齐晓娜 王佳 +3 位作者 徐东升 张宇敬 郭佳 刘阳 《河北大学学报(自然科学版)》 CAS 北大核心 2018年第3期315-320,共6页
针对k-means差分隐私聚类结果的可用性较差的问题,依据LBS的数据采集特点对k-means算法进行了改进.仿真实验证明:在LBS隐私保护方面,提出的改进k-means聚类方法在聚类结果的匿名性方面相对普通差分隐私k-means聚类方法有一定程度的提高.
关键词 k-means 聚类 差分隐私 位置隐私保护
下载PDF
一种改进的K-Means算法 被引量:14
10
作者 尹成祥 张宏军 +2 位作者 张睿 綦秀利 王彬 《计算机技术与发展》 2014年第10期30-33,共4页
针对典型K-Means算法随机选取初始中心点导致的算法迭代次数过多的问题,采取数据分段方法,将数据点根据距离分成k段,在每段内选取一个中心作为初始中心点,进行迭代运算;为寻找最优的聚类数目k,定义了新的聚类有效性函数—聚类指数,包含... 针对典型K-Means算法随机选取初始中心点导致的算法迭代次数过多的问题,采取数据分段方法,将数据点根据距离分成k段,在每段内选取一个中心作为初始中心点,进行迭代运算;为寻找最优的聚类数目k,定义了新的聚类有效性函数—聚类指数,包含聚类紧密度和聚类显著度两个指标,通过最优化聚类指数,在[1,n(1/2)]内寻找最优的k值。在IRIS数据集进行的仿真实验结果表明,算法的迭代次数明显减少,寻找的最优k值接近数据集的真实情况,算法有效性得到了验证。 展开更多
关键词 k-means算法 分段 聚类指数 紧密度 显著度
下载PDF
一种改进的K-means聚类算法的图像检索方法 被引量:18
11
作者 吕明磊 刘冬梅 曾智勇 《计算机科学》 CSCD 北大核心 2013年第8期285-288,共4页
分析了K-means聚类算法在图像检索中的缺点,提出了一种改进的K-means聚类算法的图像检索方法。它首先计算图像特征库里面的所有颜色直方图特征之间的欧氏距离;然后根据"两个对象距离越近,相似度越大"[1]这一原理,找到符合条... 分析了K-means聚类算法在图像检索中的缺点,提出了一种改进的K-means聚类算法的图像检索方法。它首先计算图像特征库里面的所有颜色直方图特征之间的欧氏距离;然后根据"两个对象距离越近,相似度越大"[1]这一原理,找到符合条件的特征向量作为K-means聚类的初始类心进行聚类;最后进行图像检索。实验结果表明,本算法具有较高的检索准确率。 展开更多
关键词 聚类 k-means聚类算法 颜色直方图特征 图像检索 特征提取
下载PDF
基于Hash改进的k-means算法并行化设计 被引量:5
12
作者 张波 徐蔚鸿 +1 位作者 陈沅涛 朱玲 《计算机工程与科学》 CSCD 北大核心 2016年第10期1980-1985,共6页
为了解决k-means算法在Hadoop平台下处理海量高维数据时聚类效果差,以及已有的改进算法不利于并行化等问题,提出了一种基于Hash改进的并行化方案。将海量高维的数据映射到一个压缩的标识空间,进而挖掘其聚类关系,选取初始聚类中心,避免... 为了解决k-means算法在Hadoop平台下处理海量高维数据时聚类效果差,以及已有的改进算法不利于并行化等问题,提出了一种基于Hash改进的并行化方案。将海量高维的数据映射到一个压缩的标识空间,进而挖掘其聚类关系,选取初始聚类中心,避免了传统k-means算法对随机选取初始聚类中心的敏感性,减少了k-means算法的迭代次数。又结合MapReduce框架将算法整体并行化,并通过Partition、Combine等机制加强了并行化程度和执行效率。实验表明,该算法不仅提高了聚类的准确率和稳定性,同时具有良好的处理速度。 展开更多
关键词 海量数据 HADOOP HASH 并行k-means聚类 中心选取
下载PDF
结合语义改进的K-means短文本聚类算法 被引量:14
13
作者 邱云飞 赵彬 +1 位作者 林明明 王伟 《计算机工程与应用》 CSCD 北大核心 2016年第19期78-83,共6页
针对短文本聚类存在的三个主要挑战,特征关键词的稀疏性、高维空间处理的复杂性和簇的可理解性,提出了一种结合语义改进的K-means短文本聚类算法。该算法通过词语集合表示短文本,缓解了短文本特征关键词的稀疏性问题;通过挖掘短文本集... 针对短文本聚类存在的三个主要挑战,特征关键词的稀疏性、高维空间处理的复杂性和簇的可理解性,提出了一种结合语义改进的K-means短文本聚类算法。该算法通过词语集合表示短文本,缓解了短文本特征关键词的稀疏性问题;通过挖掘短文本集的最大频繁词集获取初始聚类中心,有效克服了K-means聚类算法对初始聚类中心敏感的缺点,解决了簇的理解性问题;通过结合TF-IDF值的语义相似度计算文档之间的相似度,避免了高维空间的运算。实验结果表明,从语义角度出发实现的短文本聚类算法优于传统的短文本聚类算法。 展开更多
关键词 文本挖掘 短文本聚类 k-means算法 最大频繁词集 知网 语义相似度
下载PDF
一种改进的k-means聚类视觉词典构造方法 被引量:8
14
作者 赵春晖 王莹 Masahide Kaneko 《仪器仪表学报》 EI CAS CSCD 北大核心 2012年第10期2380-2386,共7页
传统词袋(bag of words,BoW)模型在构造视觉词典时一般采用k-means聚类方法实现,但k-means聚类方法的性能在很大程度上依赖于初始点的选择,从而导致生成的视觉词典鲁棒性较差,此外,每次迭代都要计算数据点与中心点的距离,计算复杂度高... 传统词袋(bag of words,BoW)模型在构造视觉词典时一般采用k-means聚类方法实现,但k-means聚类方法的性能在很大程度上依赖于初始点的选择,从而导致生成的视觉词典鲁棒性较差,此外,每次迭代都要计算数据点与中心点的距离,计算复杂度高。针对上述问题,提出了一种改进的k-means聚类视觉词典构造方法,该方法首先对初始值的选取进行了优化,克服了随机选取初始值对聚类性能的影响,其次基于三角形不等式对计算进行了简化,使生成的视觉词典更加稳定,计算复杂度更低,最后引入权值分布对图像进行基于视觉词典的表示,并将基于改进的视觉词典的词袋模型应用于图像分类,提高了分类性能。通过在Caltech 101和Caltech 256两个数据库进行实验,验证了本文方法的有效性,并分析了词典库大小对分类性能的影响。从实验结果可以看出,采用本文方法所得到的分类正确率提高了5%~8%。 展开更多
关键词 词袋模型 视觉词典构造 k-means聚类 图像分类
下载PDF
一种改进的k-means中文文本聚类算法 被引量:13
15
作者 龚静 李安民 《湖南工业大学学报》 2008年第2期52-54,共3页
提出了k-means聚类算法中选取初始聚类中心及处理孤立点的新方法,改进了k-means算法对初始聚类中心和孤立点文本很敏感的不足之处,并将改进后的算法应用于中文文本聚类中。实验结果表明,改进的算法较原算法在准确率上有较大提高,并且具... 提出了k-means聚类算法中选取初始聚类中心及处理孤立点的新方法,改进了k-means算法对初始聚类中心和孤立点文本很敏感的不足之处,并将改进后的算法应用于中文文本聚类中。实验结果表明,改进的算法较原算法在准确率上有较大提高,并且具有更好的稳定性。 展开更多
关键词 k-means算法 文本聚类 中文文本 层次聚类
下载PDF
改进的K-means算法在电信客户细分中的应用 被引量:6
16
作者 耿筱媛 张燕平 闫屹 《计算机技术与发展》 2008年第5期163-167,共5页
在K-means算法中,选择不同的初始聚类中心会产生不同的聚类结果且有不同的准确率,并且其迭代过程在时间上不是高效的。针对K-means算法的这两点不足做了一定程度上的改进,理论分析表明,改进后的算法具有较高的准确度和较低的时间复杂度... 在K-means算法中,选择不同的初始聚类中心会产生不同的聚类结果且有不同的准确率,并且其迭代过程在时间上不是高效的。针对K-means算法的这两点不足做了一定程度上的改进,理论分析表明,改进后的算法具有较高的准确度和较低的时间复杂度。采用改进后K-means聚类算法对电信客户数据进行聚类分析,得到具有不同特征的客户群组,通过与统计分析的对比,聚类结果分析更合理清晰,更便于对不同群组采取不同的经营策略,为管理者提供了合理的决策支持。 展开更多
关键词 数据挖掘 聚类算法 k-means算法 准则函数
下载PDF
基于SOM改进的K-Means聚类算法 被引量:3
17
作者 侯丽敏 王文莉 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第5期586-590,共5页
随着网络技术和相关学科的发展,入侵检测技术日趋成熟.对SOM算法和K-Means算法进行了具体的分析,提出了一种基于SOM和K-Means的使两类算法优点相结合并克服各自不足的聚类算法,提高了聚类信息的精确度、对攻击的识别率和系统的整体性能.
关键词 k-means算法 数据挖掘 入侵检测 网络安全
下载PDF
基于改进的K-Means算法入侵检测框架 被引量:3
18
作者 李蓉 周维柏 《实验室研究与探索》 CAS 北大核心 2014年第3期110-114,共5页
针对现有网络入侵检测系统存在虚警和报警信息数量大等问题,提出一种改进的K-Means分群算法。该算法针对网络流量中的数据,首先利用改进的KMeans分群算法调整群中心的位置以寻找最佳群中心,让数据资料更加适合分群。接着运用差分算法,... 针对现有网络入侵检测系统存在虚警和报警信息数量大等问题,提出一种改进的K-Means分群算法。该算法针对网络流量中的数据,首先利用改进的KMeans分群算法调整群中心的位置以寻找最佳群中心,让数据资料更加适合分群。接着运用差分算法,寻找出最适合的分群组数与最佳的分群结果。在检测时利用样本与各群间距离来识别是否属于异常或正常群组。仿真实验表明,该算法分群准确率高,误判率低,有效地提高系统的性能。 展开更多
关键词 网络安全 入侵检测系统 k-means 差分算法
下载PDF
基于信息熵改进的K-means动态聚类算法 被引量:20
19
作者 杨玉梅 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2016年第2期254-259,共6页
初始聚类中心及聚类过程产生的冗余信息是影响K-means算法聚类性能的主要因素,也是阻碍该算法性能提升的主要问题。因此,提出一个改进的K-means算法。改进算法通过采用信息熵对聚类对象进行赋权来修正聚类对象间的距离函数,并利用初始... 初始聚类中心及聚类过程产生的冗余信息是影响K-means算法聚类性能的主要因素,也是阻碍该算法性能提升的主要问题。因此,提出一个改进的K-means算法。改进算法通过采用信息熵对聚类对象进行赋权来修正聚类对象间的距离函数,并利用初始聚类的赋权函数选出质量较高的初始聚类中心点;然后,为算法的终止条件设定标准阈值来减少算法迭代次数,从而减少学习时间;最后,通过删除由信息动态变化而产生的冗余信息来减少动态聚类过程中的干扰,以使算法达到更准确更高效的聚类效果。实验结果表明,当数据样本数量较多时,相比于传统的K-means算法和其他改进的K-means算法,提出的算法在准确率和执行效率上都有较大提升。 展开更多
关键词 k-means算法 信息熵 数据挖掘 动态聚类
下载PDF
基于量子蚁群改进的K-means算法 被引量:3
20
作者 郝春梅 吴波 《计算机测量与控制》 北大核心 2013年第4期1011-1013,共3页
传统的K-means算法局部搜索能力强,但是对初始化比较敏感,并且容易陷入局部最优值,这些缺陷严重限制了它的应用范围;针对目前普遍所存在的问题,本文提出一种改进的基于量子蚁群的聚类方法,将量子计算原理和蚂蚁算法结合来改进K-means算... 传统的K-means算法局部搜索能力强,但是对初始化比较敏感,并且容易陷入局部最优值,这些缺陷严重限制了它的应用范围;针对目前普遍所存在的问题,本文提出一种改进的基于量子蚁群的聚类方法,将量子计算原理和蚂蚁算法结合来改进K-means算法,该方法结合了两个方法的优点,力求优势互补,并且在该方法中引入微观适应性策略改进了算法中的交叉算子和变异算子,使得聚类算法的局部搜索能力得到很大的提高;实验证明该算法有很好的全局收敛性,克服了K-means的不足,能有效解决未成熟收敛的问题。 展开更多
关键词 量子计算 蚂蚁算法 k-means算法 聚类分析
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部