现有的前向碰撞预警系统大多采用多个毫米波雷达叠加或毫米波雷达与视觉传感器融合等方式,存在成本高、算法受限等问题。在比较多种传感器的性能及应用优、缺点后,选择双目视觉传感器作为前向碰撞预警系统传感器。将改进后的碰撞时间(Ti...现有的前向碰撞预警系统大多采用多个毫米波雷达叠加或毫米波雷达与视觉传感器融合等方式,存在成本高、算法受限等问题。在比较多种传感器的性能及应用优、缺点后,选择双目视觉传感器作为前向碰撞预警系统传感器。将改进后的碰撞时间(Time to Collision,TTC)算法与卡尔曼滤波融合,结合双目视觉传感器,比较TTC值与适应性阈值,评估风险等级,确保行车安全,降低事故率。在Matlab环境下,基于改进算法对两个不同行车场景进行仿真分析。结果表明,与传统的TTC算法相比,融合卡尔曼滤波TTC算法的碰撞时间预警响应及时性和可靠性显著提高。展开更多
为提高浮动车数据中异常数据检测能力及不同载客状态下的模型检测分析能力,提出基于S-DTA-IIForest(Summation&Difference Third Order Average&Improvement-Isolation Forest)的浮动车数据异常检测算法。构建由相邻两项求和(S...为提高浮动车数据中异常数据检测能力及不同载客状态下的模型检测分析能力,提出基于S-DTA-IIForest(Summation&Difference Third Order Average&Improvement-Isolation Forest)的浮动车数据异常检测算法。构建由相邻两项求和(S)、三阶求和平均差分(DTA)的二维度空间SDTA特征向量;提出差额累计更新和动态区分辨识的改进孤立森林IIForest算法,通过设置停止阈值参数,避免当出现新样本异常值分数大于停止阈值时,仅更新样本不更新孤立森林模型的问题,设计每个二叉树区分辨识度参数,区分辨识度位于停止区间时停止二叉树生长,提高算法收敛性能,以ROC(Receiver Operating Characteristic)曲线下面积AUC(Area Under ROC Cure)、F1-score为指标对模型精度进行对比分析,并以重庆市中心城区学府大道开展实例验证。结果表明:本文S-DTA-IIForest组合算法AUC、F1-score分别为86.63%、0.89,AUC较传统孤立森林IForest(Isolation Forest)提高32.4%,运行效率提高1.29%,具有收敛速度更快、精度更高的优势,载客条件下模型AUC、F1-score较未载客分别提高7.7%、10.8%,组合算法对载客数据有更高的检测精度,且未载客状态数据异常率较载客状态增加71.4%,未载客数据异常率更高。展开更多
文摘现有的前向碰撞预警系统大多采用多个毫米波雷达叠加或毫米波雷达与视觉传感器融合等方式,存在成本高、算法受限等问题。在比较多种传感器的性能及应用优、缺点后,选择双目视觉传感器作为前向碰撞预警系统传感器。将改进后的碰撞时间(Time to Collision,TTC)算法与卡尔曼滤波融合,结合双目视觉传感器,比较TTC值与适应性阈值,评估风险等级,确保行车安全,降低事故率。在Matlab环境下,基于改进算法对两个不同行车场景进行仿真分析。结果表明,与传统的TTC算法相比,融合卡尔曼滤波TTC算法的碰撞时间预警响应及时性和可靠性显著提高。
文摘为提高浮动车数据中异常数据检测能力及不同载客状态下的模型检测分析能力,提出基于S-DTA-IIForest(Summation&Difference Third Order Average&Improvement-Isolation Forest)的浮动车数据异常检测算法。构建由相邻两项求和(S)、三阶求和平均差分(DTA)的二维度空间SDTA特征向量;提出差额累计更新和动态区分辨识的改进孤立森林IIForest算法,通过设置停止阈值参数,避免当出现新样本异常值分数大于停止阈值时,仅更新样本不更新孤立森林模型的问题,设计每个二叉树区分辨识度参数,区分辨识度位于停止区间时停止二叉树生长,提高算法收敛性能,以ROC(Receiver Operating Characteristic)曲线下面积AUC(Area Under ROC Cure)、F1-score为指标对模型精度进行对比分析,并以重庆市中心城区学府大道开展实例验证。结果表明:本文S-DTA-IIForest组合算法AUC、F1-score分别为86.63%、0.89,AUC较传统孤立森林IForest(Isolation Forest)提高32.4%,运行效率提高1.29%,具有收敛速度更快、精度更高的优势,载客条件下模型AUC、F1-score较未载客分别提高7.7%、10.8%,组合算法对载客数据有更高的检测精度,且未载客状态数据异常率较载客状态增加71.4%,未载客数据异常率更高。