特征选择是面向对象信息提取的关键步骤之一。本文针对分离阈值(separability and threshold,SEaTH)这一特征选择方法在实际应用中存在的不足,例如未考虑特征值的离散程度,仅利用J-M距离评判单一特征,特征间可能存在较强相关性,以及无...特征选择是面向对象信息提取的关键步骤之一。本文针对分离阈值(separability and threshold,SEaTH)这一特征选择方法在实际应用中存在的不足,例如未考虑特征值的离散程度,仅利用J-M距离评判单一特征,特征间可能存在较强相关性,以及无法有效确定出分类顺序,提出了一种改进的SEaTH算法(optimized SEaTH,OPSEaTH)。OPSEaTH算法首先在J-M距离基础上构建了一类特征评价指标(E值),有效解决了特征值的离散度问题;然后,基于E值构建出特征组合评价指标(C_(e)值),可有效评估得到每种地物的最佳特征组合并自动确定出地物的分类顺序;最后基于eCognition等分类器可完成对地物对象的最终有效分类。利用高分二号遥感影像数据对本文方法进行了测试,并将结果分别与SEaTH算法、DPC、OIF和最近邻分类器的分类结果进行了对比,结果表明:OPSEaTH算法不仅能有效降低特征维数、优化特征空间,还能够对分类顺序进行自动化合理确定,总体精度和Kappa系数及其他精度指标,均显著优于基于SEaTH算法的特征选择结果。本文方法无论从特征降维效果、分类结果精度还是计算效率方面均优于DPC、OIF和最近邻分类器结果。OPSEaTH是一种更优的特征选择方法。展开更多
针对高维小样本的DNA微阵列数据多分类问题,提出一种基于ReliefF和蚁群算法的特征基因选择方法(ReliefF and ant colony optimization,Re FACO)。该方法首先采用ReliefF算法评估特征权重,根据阈值筛选出无关基因;然后引入改进的蚁群算法...针对高维小样本的DNA微阵列数据多分类问题,提出一种基于ReliefF和蚁群算法的特征基因选择方法(ReliefF and ant colony optimization,Re FACO)。该方法首先采用ReliefF算法评估特征权重,根据阈值筛选出无关基因;然后引入改进的蚁群算法,在迭代改进的过程中寻找最优基因子集;最后利用经典分类算法对维数约简后的数据分类识别。经实验证明,该方法可有效地剔除无关和冗余基因,并利用较少特征基因达到较高多分类效果。展开更多
文摘特征选择是面向对象信息提取的关键步骤之一。本文针对分离阈值(separability and threshold,SEaTH)这一特征选择方法在实际应用中存在的不足,例如未考虑特征值的离散程度,仅利用J-M距离评判单一特征,特征间可能存在较强相关性,以及无法有效确定出分类顺序,提出了一种改进的SEaTH算法(optimized SEaTH,OPSEaTH)。OPSEaTH算法首先在J-M距离基础上构建了一类特征评价指标(E值),有效解决了特征值的离散度问题;然后,基于E值构建出特征组合评价指标(C_(e)值),可有效评估得到每种地物的最佳特征组合并自动确定出地物的分类顺序;最后基于eCognition等分类器可完成对地物对象的最终有效分类。利用高分二号遥感影像数据对本文方法进行了测试,并将结果分别与SEaTH算法、DPC、OIF和最近邻分类器的分类结果进行了对比,结果表明:OPSEaTH算法不仅能有效降低特征维数、优化特征空间,还能够对分类顺序进行自动化合理确定,总体精度和Kappa系数及其他精度指标,均显著优于基于SEaTH算法的特征选择结果。本文方法无论从特征降维效果、分类结果精度还是计算效率方面均优于DPC、OIF和最近邻分类器结果。OPSEaTH是一种更优的特征选择方法。
文摘针对高维小样本的DNA微阵列数据多分类问题,提出一种基于ReliefF和蚁群算法的特征基因选择方法(ReliefF and ant colony optimization,Re FACO)。该方法首先采用ReliefF算法评估特征权重,根据阈值筛选出无关基因;然后引入改进的蚁群算法,在迭代改进的过程中寻找最优基因子集;最后利用经典分类算法对维数约简后的数据分类识别。经实验证明,该方法可有效地剔除无关和冗余基因,并利用较少特征基因达到较高多分类效果。