期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
轻量级高分辨率人体姿态估计研究 被引量:3
1
作者 渠涵冰 贾振堂 《激光与光电子学进展》 CSCD 北大核心 2022年第18期119-126,共8页
人体姿态估计通常使用高分辨率表示的方法来实现关键点的检测,但网络参数量较大,运算较为复杂。基于此,提出了一种轻量级高分辨率人体姿态估计算法。首先,使用稠密连接网络(DenseNet)并进行轻量化改进,提出密集连接层,使得各层之间连接... 人体姿态估计通常使用高分辨率表示的方法来实现关键点的检测,但网络参数量较大,运算较为复杂。基于此,提出了一种轻量级高分辨率人体姿态估计算法。首先,使用稠密连接网络(DenseNet)并进行轻量化改进,提出密集连接层,使得各层之间连接更加紧密,从而降低网络的运算参数,优化网络的运算速度;其次,在降低参数且精度保持不变的情况下,在多尺度融合阶段使用上采样和反卷积模块结合的融合方式,使得输出的特征信息更加丰富,检测结果更加准确;最后,利用COCO 2017验证数据集及MPII数据集进行验证。实验结果表明,在保证准确率的情况下与其他人体姿态估计算法相比,所提算法的平均精度为74.8%,运算参数减少了63.8%,网络运算复杂度缩小了8.5%,同时也到达了实时性的效果。 展开更多
关键词 图像处理 人体姿态估计 高分辨率表示 多尺度融合 轻量化 改进稠密连接网络
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部