期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于改进粒子群优化-反向传播神经网络算法的小麦储藏品质预测模型 被引量:8
1
作者 蒋华伟 郭陶 杨震 《科学技术与工程》 北大核心 2021年第21期8951-8956,共6页
在使用反向传播神经网络(back propagation neural network,BPNN)预测小麦的储藏品质时,由于其易陷入局部极值且收敛速度慢,导致预测误差较大且稳定性较差,由此提出一种改进粒子群(improved particle swarm optimization,IPSO)算法优化... 在使用反向传播神经网络(back propagation neural network,BPNN)预测小麦的储藏品质时,由于其易陷入局部极值且收敛速度慢,导致预测误差较大且稳定性较差,由此提出一种改进粒子群(improved particle swarm optimization,IPSO)算法优化的BPNN预测模型。采用非线性函数动态调整粒子群算法中的惯性权重和学习因子,优化BPNN中的权值参数,进而构建IPSO-BPNN预测模型。为验证该模型的准确性和稳定性,将其与BPNN模型、PSO-BPNN模型进行对比,结果表明:IPSO-BPNN模型预测的均方误差显著降低,有助于提高小麦储藏品质预测的准确性和可靠性。 展开更多
关键词 小麦储藏品质 多指标分析 粒子算法 改进粒子优化-反向传播神经网络(ipso-bpnn) 预测模型
下载PDF
基于自适应PSO-BP神经网络的电力工程造价预测研究
2
作者 于炳慧 《办公自动化》 2024年第21期1-3,共3页
文章提出对基于自适应PSO-BP神经网络的电力工程造价预测方法的设计与研究。根据当前的预测需求,先进行数据预处理,用多阶段的形式,扩大预测的覆盖范围,完成设定多阶段造价预测的目标。基于此,设计自适应PSO-BP神经网络电力造价预测模型... 文章提出对基于自适应PSO-BP神经网络的电力工程造价预测方法的设计与研究。根据当前的预测需求,先进行数据预处理,用多阶段的形式,扩大预测的覆盖范围,完成设定多阶段造价预测的目标。基于此,设计自适应PSO-BP神经网络电力造价预测模型,用动态寻优的方式实现最终预测处理。测试结果表明:对比于大数据电力工程造价的预测方法、GIM标准电力工程造价预测方法,文章设计的自适应PSO-BP神经网络电力工程造价预测方法最终得出的平均误差相对较小,整体上较可控,这说明在自适应PSO-BP神经网络的辅助下,文章设计的电力工程造价预测方法更加高效、稳定,针对性明显提升,造价预测的效果更为真实。 展开更多
关键词 自适应结构 粒子优化-反向传播(PSO-BP)神经网络 电力工程 造价预测 成本控制 电力系统
下载PDF
改进粒子BP神经网络在变电站噪声控制中的应用 被引量:6
3
作者 姜鸿羽 马宏忠 +2 位作者 梁欢 姜宁 李凯 《中国电力》 CSCD 北大核心 2014年第9期71-76,共6页
为了改善变电站噪声控制中已有自适应降噪滤波算法的自适应能力差、收敛速度慢等弊端,提出了一种新的基于粒子群优化(PSO)的误差反向传播神经网络(BPNN)智能滤波算法。该算法针对PSO算法易出现无法兼顾局部、全局搜索和群体多样性丢失... 为了改善变电站噪声控制中已有自适应降噪滤波算法的自适应能力差、收敛速度慢等弊端,提出了一种新的基于粒子群优化(PSO)的误差反向传播神经网络(BPNN)智能滤波算法。该算法针对PSO算法易出现无法兼顾局部、全局搜索和群体多样性丢失等问题,采用以粒子"亲密"度为依据来自适应调整粒子惯性因子和变异率的改进策略;利用该改进粒子群优化(IPSO)算法取代梯度下降算法,实时优化BPNN的权、阈值,使噪声迅速降低,再用梯度下降算法对BPNN的权、阈值作进一步的精细优化,使噪声得到更大程度上的抑制。文中以某变电站变压器噪声信号为仿真声源,分别利用所提算法、PSO-BPNN算法及BPNN算法对该声源信号进行主动抑制,结果表明所提算法性能明显优于另外2种算法的性能,使变压器降噪系统性能得到较大的改善。 展开更多
关键词 电力系统 变电站 噪声控制 误差反向传播神经网络 改进粒子优化算法 粒子亲密度 惯性因子 自适应变异
下载PDF
球磨机混合优化前向神经网络PID解耦控制系统 被引量:15
4
作者 程启明 程尹曼 +1 位作者 汪明媚 郑勇 《电力系统及其自动化学报》 CSCD 北大核心 2010年第2期54-59,共6页
针对球磨机制粉系统的多变量、强耦合、非线性和时变性等特点,提出球磨机的混沌PSO与BP混合优化前向神经网络PID解耦控制系统。在这种控制器中,PID控制器的控制参数采用神经网络进行自适应整定,神经网络的权值采用混合优化算法进行调整... 针对球磨机制粉系统的多变量、强耦合、非线性和时变性等特点,提出球磨机的混沌PSO与BP混合优化前向神经网络PID解耦控制系统。在这种控制器中,PID控制器的控制参数采用神经网络进行自适应整定,神经网络的权值采用混合优化算法进行调整。仿真结果表明该控制方法跟踪快、鲁棒性强、解耦好,控制品质优于传统PID解耦控制方法,较好地解决了球磨机的时变性、耦合性等问题。 展开更多
关键词 球磨机 混沌粒子优化 反向传播算法 比例-积分-微分控制 前向神经网络
下载PDF
基于高维空间几何的PSO-BP神经网络图像复原 被引量:4
5
作者 郭佩 何小海 +1 位作者 陶青川 李木维 《计算机工程与应用》 CSCD 2012年第2期156-159,共4页
针对退化图像复原问题,提出了一种基于高维空间几何理论(HDSG)的PSO-BP神经网络图像复原方法。高维空间几何理论中的同胚映射和同源连续性原理,把图像映射为高维空间中的一个点,通过回归原模糊图像和由此图像衍生出的几幅更加模糊的图... 针对退化图像复原问题,提出了一种基于高维空间几何理论(HDSG)的PSO-BP神经网络图像复原方法。高维空间几何理论中的同胚映射和同源连续性原理,把图像映射为高维空间中的一个点,通过回归原模糊图像和由此图像衍生出的几幅更加模糊的图像对应在空间中几个点的分布曲线,得到清晰的复原图像。在该理论基础上,用PSO-BP神经网络来确定高维空间中各点的关系,通过对训练样本的学习训练,在三幅退化图像与原始清晰图像之间建立映射关系,然后用训练好的网络对测试样本进行复原。对比实验表明,该方法在主观视觉和定量分析上都获得了较好的效果。 展开更多
关键词 图像复原 神经网络 粒子优化算法-反向传播(PSO-BP) 高维空间几何
下载PDF
基于改进PSO-BP神经网络的挖掘机液压系统故障诊断
6
作者 郭京峰 《现代制造技术与装备》 2024年第11期37-39,共3页
由于现行方法在挖掘机液压系统故障诊断中存在一定不足,无法达到预期效果,提出基于改进粒子群优化算法(ParticleSwarmOptimization,PSO)-反向传播(BackPropagation,BP)神经网络的挖掘机液压系统故障诊断方法。采用无线传感器采集液压系... 由于现行方法在挖掘机液压系统故障诊断中存在一定不足,无法达到预期效果,提出基于改进粒子群优化算法(ParticleSwarmOptimization,PSO)-反向传播(BackPropagation,BP)神经网络的挖掘机液压系统故障诊断方法。采用无线传感器采集液压系统数据,对采集的数据进行预处理,利用PSO对BP神经网络进行迭代训练、优化网络参数,利用改进BP神经网络挖掘液压系统数据,识别诊断系统故障。实验结果表明,所提方法的平均绝对误差百分比不超过1%,漏诊比例也不超过1%,能够实现对挖掘机液压系统故障的精准诊断。 展开更多
关键词 改进粒子优化算法(PSO) 反向传播(BP)神经网络 挖掘机 液压系统 故障诊断
下载PDF
联盟链视角下基于IIWPSO-BP的信息安全风险预测模型 被引量:7
7
作者 周新民 罗文敏 +1 位作者 刘俊杰 谢宝 《中国安全科学学报》 CAS CSCD 北大核心 2022年第8期52-60,共9页
为及时发现智慧城市潜在信息安全风险,构建一种基于改进惯性权重的粒子群优化(IIWPSO)算法优化反向传播(BP)(IIWPSO-BP)神经网络算法的信息安全风险预测模型。首先,综合考虑信息拥有者、共享信息、联盟链技术、信息使用者、联盟链管理... 为及时发现智慧城市潜在信息安全风险,构建一种基于改进惯性权重的粒子群优化(IIWPSO)算法优化反向传播(BP)(IIWPSO-BP)神经网络算法的信息安全风险预测模型。首先,综合考虑信息拥有者、共享信息、联盟链技术、信息使用者、联盟链管理和安全措施6个一级指标,构建信息安全风险指标体系;其次,通过量化信息安全风险指标,训练并测试所构建的信息安全风险预测模型;最后,对比分析模型的鲁棒性、精确性和时间复杂度。结果表明:IIWPSO-BP预测模型的平均绝对误差(MAE)为0.1374,平均相对误差(MRE)为0.0385,拟合度为0.9720;与PSO-BP神经网络、BP神经网络相比,预测精度分别提升了37.6%、65.2%。 展开更多
关键词 联盟链 信息安全 改进惯性权重的粒子优化(IIWPSO)算法 反向传播(BP)神经网络 风险预测 智慧城市
下载PDF
波浪滑翔器航向控制方法与实验研究
8
作者 孙秀军 陈重喆 周莹 《力学与实践》 2024年第3期581-592,共12页
波浪滑翔器是一种典型的非线性、强耦合、欠驱动系统。传统比例-积分-微分(proportion integral derivative, PID)控制器在复杂多变的海洋环境下难以满足高精度的航向控制要求且存在参数整定困难、无法在线调整等缺点。针对此问题提出... 波浪滑翔器是一种典型的非线性、强耦合、欠驱动系统。传统比例-积分-微分(proportion integral derivative, PID)控制器在复杂多变的海洋环境下难以满足高精度的航向控制要求且存在参数整定困难、无法在线调整等缺点。针对此问题提出一种基于改进粒子群优化(improved particle swarm optimization, IPSO)算法的反向传播(back propagation, BP)神经网络PID控制方法,首先建立波浪滑翔器数学模型,其次利用BP神经网络的自学习能力自适应调整PID参数。同时针对BP神经网络存在对初始权值敏感、反向传播易陷入局部极值等缺点,引入IPSO算法对网络初始权值进行优化,确保BP-PID网络能够获取全局最优解。基于仿真进行海试验证,结果表明所提算法能够显著提高航向控制性能,验证了所提算法的有效性和真实性。 展开更多
关键词 波浪滑翔器 反向传播神经网络 航向控制 粒子优化 比例-积分-微分
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部