期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
聚类分析和改进贝叶斯算法的短期负荷预测 被引量:2
1
作者 邓小亚 《电气应用》 2015年第12期37-40,共4页
为了提高短期负荷的预测准确度,提出一种聚类分析和改进贝叶斯算法的短期负荷预测模型。首先收集短期负荷的历史样本,并进行归一化处理,加快建模速度;然后采用模糊均值聚类算法对短期负荷历史样本进行分类,构建贝叶斯算法的学习样本;最... 为了提高短期负荷的预测准确度,提出一种聚类分析和改进贝叶斯算法的短期负荷预测模型。首先收集短期负荷的历史样本,并进行归一化处理,加快建模速度;然后采用模糊均值聚类算法对短期负荷历史样本进行分类,构建贝叶斯算法的学习样本;最后采用贝叶斯算法建立短期负荷预测模型,并针对贝叶斯算法的不足进行相应改进。采用具体短期负荷历史数据序列对模型的有效性进行仿真测试,结果表明,聚类分析和改进贝叶斯算法的短期负荷预测模型提高了短期电力负荷的预测准确度,加快了模型的训练速度,预测结果更加可靠,可以为电力管理部门科学决策提供参考。 展开更多
关键词 短期负荷 改进贝叶斯学习算法 模糊均值聚类
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部