期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于运动观察EEG的运动方向解析
1
作者 逯鹏 谢全威 +3 位作者 李新建 胡玉霞 张景景 刘豪杰 《计算机应用研究》 CSCD 北大核心 2018年第11期3318-3321,共4页
与运动想象相比,运动观察的脑电信号没有被试主动思维参与,解析难点在于其信号幅值更弱且难以获取。实验针对运动观察中的方向判别进行了研究,以获取运动观察过程脑电特征明显频段作为切入点,利用运动观察眼动追踪信号确定有效观察任务... 与运动想象相比,运动观察的脑电信号没有被试主动思维参与,解析难点在于其信号幅值更弱且难以获取。实验针对运动观察中的方向判别进行了研究,以获取运动观察过程脑电特征明显频段作为切入点,利用运动观察眼动追踪信号确定有效观察任务,绘制脑地形图序列,定位激活的脑区,选出关联通道;然后结合运动观察EEG在特定频段时域上的能量特征较明显的特性,改进CSP算法,基于信号能量特征,利用SVM进行分类识别。实验得到运动方向解析平均80%以上分类准确率,最高在0~4 Hz频段上,达到了86. 28%,实现了运动观察虚拟小车左右转的解析与识别,为复杂运动观察任务EEG的解析与识别提供了有效的方法。 展开更多
关键词 EEG 运动观察 虚拟小车 改进csp 能量特征
下载PDF
Classification of EEG-based single-trial motor imagery tasks using a B-CSP method for BCI 被引量:5
2
作者 Zhi-chuan TANG Chao LI +2 位作者 Jian-feng WU Peng-cheng LIU Shi-wei CHENG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2019年第8期1087-1099,共13页
Classifying single-trial electroencephalogram(EEG)based motor imagery(MI)tasks is extensively used to control brain-computer interface(BCI)applications,as a communication bridge between humans and computers.However,th... Classifying single-trial electroencephalogram(EEG)based motor imagery(MI)tasks is extensively used to control brain-computer interface(BCI)applications,as a communication bridge between humans and computers.However,the low signal-to-noise ratio and individual differences of EEG can affect the classification results negatively.In this paper,we propose an improved common spatial pattern(B-CSP)method to extract features for alleviating these adverse effects.First,for different subjects,the method of Bhattacharyya distance is used to select the optimal frequency band of each electrode including strong event-related desynchronization(ERD)and event-related synchronization(ERS)patterns;then the signals of the optimal frequency band are decomposed into spatial patterns,and the features that can describe the maximum differences of two classes of MI are extracted from the EEG data.The proposed method is applied to the public data set and experimental data set to extract features which are input into a back propagation neural network(BPNN)classifier to classify single-trial MI EEG.Another two conventional feature extraction methods,original common spatial pattern(CSP)and autoregressive(AR),are used for comparison.An improved classification performance for both data sets(public data set:91.25%±1.77%for left hand vs.foot and84.50%±5.42%for left hand vs.right hand;experimental data set:90.43%±4.26%for left hand vs.foot)verifies the advantages of the B-CSP method over conventional methods.The results demonstrate that our proposed B-CSP method can classify EEG-based MI tasks effectively,and this study provides practical and theoretical approaches to BCI applications. 展开更多
关键词 Electroencephalogram(EEG) Motor imagery(MI) Improved common spatial pattern(B-csp) Feature extraction CLASSIFICATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部