DBSCAN(density based spatial clustering of applications with noise)算法是一种典型的基于密度的聚类算法。该算法可以识别任意形状的类簇,但聚类结果依赖于参数Eps和MinPts的选择,而且对于一些密度差别较大的数据集,可能得不到具...DBSCAN(density based spatial clustering of applications with noise)算法是一种典型的基于密度的聚类算法。该算法可以识别任意形状的类簇,但聚类结果依赖于参数Eps和MinPts的选择,而且对于一些密度差别较大的数据集,可能得不到具有正确类簇个数的聚类结果,也可能将部分数据错分为噪声。为此,利用数据场能较好描述数据分布,反映数据关系的优势,提出了一种基于数据场的改进DBSCAN聚类算法。该算法引入平均势差的概念,在聚类过程中动态地确定每个类的Eps和平均势差,从而能够在一些密度相差较大的数据集上得到较好的聚类结果。实验表明,所提算法的性能优于DBSCAN算法。展开更多
受限于自然条件,光伏出力具有很强的随机性。为准确评估轨道交通基础设施分布式光伏发电的光伏出力特性,提出一种基于改进K-means聚类算法的轨道交通基础设施分布式光伏发电典型场景生成方法,并基于此进行光伏出力特性分析。首先,基于...受限于自然条件,光伏出力具有很强的随机性。为准确评估轨道交通基础设施分布式光伏发电的光伏出力特性,提出一种基于改进K-means聚类算法的轨道交通基础设施分布式光伏发电典型场景生成方法,并基于此进行光伏出力特性分析。首先,基于分布式光伏发电设施以及气象数据,利用PVsyst软件模拟光伏发电出力数据。然后,针对基本K-means聚类算法聚类参数和初始聚类中心盲目性高的问题,结合聚类有效性指标(Density based index,DBI)和层次聚类对其进行改进并利用改进K-means聚类算法生成光伏典型日出力场景。最后,基于华中地区某地轨道交通基础设施分布式光伏系统对所提方法的有效性和优越性进行验证,并通过定性和定量分析各典型场景的出力特性揭示轨道交通基础设施分布式光伏出力的规律和特点。展开更多
针对焊接之后的焊缝提取误差大、不易提取的问题,文章提出了一种DBSCAN聚类(densitybased spatial clustering of applications with noise)与改进主成分分析(principal component analysis,PCA)算法融合的焊缝提取算法。首先对焊缝图...针对焊接之后的焊缝提取误差大、不易提取的问题,文章提出了一种DBSCAN聚类(densitybased spatial clustering of applications with noise)与改进主成分分析(principal component analysis,PCA)算法融合的焊缝提取算法。首先对焊缝图像进行灰度化、自适应中值滤波等预处理;其次对图像应用Canny边缘检测算法提取焊缝边缘,并使用DBSCAN密度聚类算法聚类焊缝边缘;之后依据改进的PCA算法寻找焊缝的主成分,将焊缝向主向量映射统计,根据图像分辨率自动分配一个阈值获取焊缝的左右边界,再将焊缝的左右边界反映射到次主向量获取焊缝的上下边界;最后按照文章提出的算法完成了三组对比实验,分析了算法受分辨率、焊接方式、光照强度等因素的影响。实验证明,文章提出的算法对直缝提取效果良好,提取精度超过了95%。展开更多
文摘DBSCAN(density based spatial clustering of applications with noise)算法是一种典型的基于密度的聚类算法。该算法可以识别任意形状的类簇,但聚类结果依赖于参数Eps和MinPts的选择,而且对于一些密度差别较大的数据集,可能得不到具有正确类簇个数的聚类结果,也可能将部分数据错分为噪声。为此,利用数据场能较好描述数据分布,反映数据关系的优势,提出了一种基于数据场的改进DBSCAN聚类算法。该算法引入平均势差的概念,在聚类过程中动态地确定每个类的Eps和平均势差,从而能够在一些密度相差较大的数据集上得到较好的聚类结果。实验表明,所提算法的性能优于DBSCAN算法。
文摘受限于自然条件,光伏出力具有很强的随机性。为准确评估轨道交通基础设施分布式光伏发电的光伏出力特性,提出一种基于改进K-means聚类算法的轨道交通基础设施分布式光伏发电典型场景生成方法,并基于此进行光伏出力特性分析。首先,基于分布式光伏发电设施以及气象数据,利用PVsyst软件模拟光伏发电出力数据。然后,针对基本K-means聚类算法聚类参数和初始聚类中心盲目性高的问题,结合聚类有效性指标(Density based index,DBI)和层次聚类对其进行改进并利用改进K-means聚类算法生成光伏典型日出力场景。最后,基于华中地区某地轨道交通基础设施分布式光伏系统对所提方法的有效性和优越性进行验证,并通过定性和定量分析各典型场景的出力特性揭示轨道交通基础设施分布式光伏出力的规律和特点。
文摘针对焊接之后的焊缝提取误差大、不易提取的问题,文章提出了一种DBSCAN聚类(densitybased spatial clustering of applications with noise)与改进主成分分析(principal component analysis,PCA)算法融合的焊缝提取算法。首先对焊缝图像进行灰度化、自适应中值滤波等预处理;其次对图像应用Canny边缘检测算法提取焊缝边缘,并使用DBSCAN密度聚类算法聚类焊缝边缘;之后依据改进的PCA算法寻找焊缝的主成分,将焊缝向主向量映射统计,根据图像分辨率自动分配一个阈值获取焊缝的左右边界,再将焊缝的左右边界反映射到次主向量获取焊缝的上下边界;最后按照文章提出的算法完成了三组对比实验,分析了算法受分辨率、焊接方式、光照强度等因素的影响。实验证明,文章提出的算法对直缝提取效果良好,提取精度超过了95%。