蓄电池荷电状态(state of charge,SOC)是电池管理系统最为重要的参数之一,由于飞机蓄电池工作环境恶劣复杂,具有较强的非线性,给蓄电池的在线SOC估计带来较大的困难。以提高复杂应力条件下飞机蓄电池在线SOC估计精度为目的,采用性能测...蓄电池荷电状态(state of charge,SOC)是电池管理系统最为重要的参数之一,由于飞机蓄电池工作环境恶劣复杂,具有较强的非线性,给蓄电池的在线SOC估计带来较大的困难。以提高复杂应力条件下飞机蓄电池在线SOC估计精度为目的,采用性能测试实验对蓄电池性能参数的温度、放电率特性进行研究,并提出递推最小二乘法与扩展卡尔曼滤波算法结合的改进EKF方法,实现蓄电池等效电路模型参数的在线辨识以及蓄电池在线SOC的估计。上述方法通过物理实验进行了验证,实验结果表明,改进后EKF方法的SOC估计误差小于0.5%,估计精度获得明显提高。展开更多
文摘蓄电池荷电状态(state of charge,SOC)是电池管理系统最为重要的参数之一,由于飞机蓄电池工作环境恶劣复杂,具有较强的非线性,给蓄电池的在线SOC估计带来较大的困难。以提高复杂应力条件下飞机蓄电池在线SOC估计精度为目的,采用性能测试实验对蓄电池性能参数的温度、放电率特性进行研究,并提出递推最小二乘法与扩展卡尔曼滤波算法结合的改进EKF方法,实现蓄电池等效电路模型参数的在线辨识以及蓄电池在线SOC的估计。上述方法通过物理实验进行了验证,实验结果表明,改进后EKF方法的SOC估计误差小于0.5%,估计精度获得明显提高。