为了提高光伏发电功率短期预测结果的准确性,提出了一种基于改进灰狼(improved grey wolf optimization,IGWO)算法优化长短时记忆(long short term memory,LSTM)神经网络的光伏发电功率短期预测方法。利用余弦相似度寻找相似日,确定光...为了提高光伏发电功率短期预测结果的准确性,提出了一种基于改进灰狼(improved grey wolf optimization,IGWO)算法优化长短时记忆(long short term memory,LSTM)神经网络的光伏发电功率短期预测方法。利用余弦相似度寻找相似日,确定光伏发电功率预测的特征量和训练集。采用非线性收敛因子和差分进化策略对GWO算法进行改进,得到收敛性能更好的IGWO算法,采用IGWO算法对LSTM的超参数进行优化,建立了基于IGWO-LSTM的光伏发电功率短期预测模型。使用某小型光伏电站的运行数据进行仿真分析,结果表明,IGWOLSTM模型对晴天、多云和阴雨天气光伏功率预测结果的均方根误差依次为2.11 kW、2.48 kW和2.74 kW,平均相对误差依次为3.43%、4.81%和6.33%,预测效果优于其他方法,验证了所提方法的实用性和有效性。展开更多
针对日趋严重的电网谐波污染亟需大量谐波数据支撑分析和治理及电网谐波监测能力不足的问题,提出一种改进减法平均优化(subtraction average based optimizer, SABO)算法优化反向传播(back-propagation, BP)神经网络实现谐波预测,以缓...针对日趋严重的电网谐波污染亟需大量谐波数据支撑分析和治理及电网谐波监测能力不足的问题,提出一种改进减法平均优化(subtraction average based optimizer, SABO)算法优化反向传播(back-propagation, BP)神经网络实现谐波预测,以缓解当前谐波数据匮乏的问题。为了克服现有SABO算法易于陷入局部最优解,初始化时使用Logistic混沌映射替代随机数,同时迭代搜索中利用黄金正弦优化算法辅助SABO跳出局部最优,从而提高BP神经网络预测准确率。最后,以某省实际运行数据验证所提改进SABAO-BP模型在谐波电压畸变率及单次谐波电压含有率预测中均具有较高准确性。展开更多
文摘为了提高光伏发电功率短期预测结果的准确性,提出了一种基于改进灰狼(improved grey wolf optimization,IGWO)算法优化长短时记忆(long short term memory,LSTM)神经网络的光伏发电功率短期预测方法。利用余弦相似度寻找相似日,确定光伏发电功率预测的特征量和训练集。采用非线性收敛因子和差分进化策略对GWO算法进行改进,得到收敛性能更好的IGWO算法,采用IGWO算法对LSTM的超参数进行优化,建立了基于IGWO-LSTM的光伏发电功率短期预测模型。使用某小型光伏电站的运行数据进行仿真分析,结果表明,IGWOLSTM模型对晴天、多云和阴雨天气光伏功率预测结果的均方根误差依次为2.11 kW、2.48 kW和2.74 kW,平均相对误差依次为3.43%、4.81%和6.33%,预测效果优于其他方法,验证了所提方法的实用性和有效性。
文摘针对日趋严重的电网谐波污染亟需大量谐波数据支撑分析和治理及电网谐波监测能力不足的问题,提出一种改进减法平均优化(subtraction average based optimizer, SABO)算法优化反向传播(back-propagation, BP)神经网络实现谐波预测,以缓解当前谐波数据匮乏的问题。为了克服现有SABO算法易于陷入局部最优解,初始化时使用Logistic混沌映射替代随机数,同时迭代搜索中利用黄金正弦优化算法辅助SABO跳出局部最优,从而提高BP神经网络预测准确率。最后,以某省实际运行数据验证所提改进SABAO-BP模型在谐波电压畸变率及单次谐波电压含有率预测中均具有较高准确性。