为了降低包含噪声的现场齿轮磨损数据对最小二乘支持向量机(least squares support vector machine,LSSVM)模型稳健性的影响,采用迭代鲁棒最小二乘支持向量机(iteratively robust least squares support vector machine,IRLSSVM)对齿轮...为了降低包含噪声的现场齿轮磨损数据对最小二乘支持向量机(least squares support vector machine,LSSVM)模型稳健性的影响,采用迭代鲁棒最小二乘支持向量机(iteratively robust least squares support vector machine,IRLSSVM)对齿轮磨损数据进行建模和预报.首先,增加权函数迭代次数以保证建模过程的鲁棒性;然后,将具有全局搜索的耦合模拟退火(coupled simulated annealing,CSA)与局部优化的单纯形法(simplex method,SM)相结合的方法用于优化IRLSSVM模型超参数,进而采用鲁棒交叉验证作为CSA-SM算法拟合目标函数,提高IRLSSVM模型超参数优化过程的鲁棒性;最后,利用K727840ZW变速箱现场齿轮磨损数据进行了数值实验,结果验证了所提出方法的有效性.展开更多
文摘为了降低包含噪声的现场齿轮磨损数据对最小二乘支持向量机(least squares support vector machine,LSSVM)模型稳健性的影响,采用迭代鲁棒最小二乘支持向量机(iteratively robust least squares support vector machine,IRLSSVM)对齿轮磨损数据进行建模和预报.首先,增加权函数迭代次数以保证建模过程的鲁棒性;然后,将具有全局搜索的耦合模拟退火(coupled simulated annealing,CSA)与局部优化的单纯形法(simplex method,SM)相结合的方法用于优化IRLSSVM模型超参数,进而采用鲁棒交叉验证作为CSA-SM算法拟合目标函数,提高IRLSSVM模型超参数优化过程的鲁棒性;最后,利用K727840ZW变速箱现场齿轮磨损数据进行了数值实验,结果验证了所提出方法的有效性.