针对传统车辆检索方法中存在准确性和区分度较低的问题,提出了一个基于改进SURF(speeded up robust features)算法的视频车辆检索方法。在车辆视频关键帧提取的基础上,根据改进SURF算法完成车辆图像的特征提取及匹配,其中包含改进FAST(f...针对传统车辆检索方法中存在准确性和区分度较低的问题,提出了一个基于改进SURF(speeded up robust features)算法的视频车辆检索方法。在车辆视频关键帧提取的基础上,根据改进SURF算法完成车辆图像的特征提取及匹配,其中包含改进FAST(features from accelerated segment test)特征点检测、SURF特征向量提取以及最近邻查询方法来进行特征点的匹配;通过计算比较待检索车辆图像与数据库车辆图像的相似度,算法完成图像筛选并反馈检索结果。实验结果表明:针对交通监控视频中待检索车辆,该方法能够较为准确地进行检索并反馈结果。展开更多
结合Kinect传感器提出一种改进的SURF(speeded up robust features)算法进行静态手语字母识别的方法。Kinect传感器采集深度图像进行手势分割可以克服光照变化、复杂背景带来的干扰;改进的SURF算法对实时图像与模板图像的积分图进行计...结合Kinect传感器提出一种改进的SURF(speeded up robust features)算法进行静态手语字母识别的方法。Kinect传感器采集深度图像进行手势分割可以克服光照变化、复杂背景带来的干扰;改进的SURF算法对实时图像与模板图像的积分图进行计算分析,提取两者的SURF关键点描述符,采用最近邻匹配算法对SURF算法自有的快速索引匹配的结果进行优化,克服了角度旋转变化对手语字母识别率的影响。实验证明,该方法在应对光照变化、复杂背景、角度旋转方面有很好的鲁棒性,平均识别率为97.7%。展开更多
文摘针对传统车辆检索方法中存在准确性和区分度较低的问题,提出了一个基于改进SURF(speeded up robust features)算法的视频车辆检索方法。在车辆视频关键帧提取的基础上,根据改进SURF算法完成车辆图像的特征提取及匹配,其中包含改进FAST(features from accelerated segment test)特征点检测、SURF特征向量提取以及最近邻查询方法来进行特征点的匹配;通过计算比较待检索车辆图像与数据库车辆图像的相似度,算法完成图像筛选并反馈检索结果。实验结果表明:针对交通监控视频中待检索车辆,该方法能够较为准确地进行检索并反馈结果。
文摘结合Kinect传感器提出一种改进的SURF(speeded up robust features)算法进行静态手语字母识别的方法。Kinect传感器采集深度图像进行手势分割可以克服光照变化、复杂背景带来的干扰;改进的SURF算法对实时图像与模板图像的积分图进行计算分析,提取两者的SURF关键点描述符,采用最近邻匹配算法对SURF算法自有的快速索引匹配的结果进行优化,克服了角度旋转变化对手语字母识别率的影响。实验证明,该方法在应对光照变化、复杂背景、角度旋转方面有很好的鲁棒性,平均识别率为97.7%。