期刊文献+
共找到50篇文章
< 1 2 3 >
每页显示 20 50 100
基于改进VGG-16深度学习网络的防护面罩佩戴识别
1
作者 陈威 张皓亮 高崇阳 《安全、健康和环境》 2024年第4期14-20,共7页
为高效识别打磨焊接作业人员是否佩戴防护面罩,提出了改进VGG-16的深度学习模型,构建了基于VGG-16的深度特征提取网络挖掘图像的重要信息。为解决VGG-16网络对图像局部特征和全局结构信息捕捉的不足,建立基于坐标注意力的空间位置信息... 为高效识别打磨焊接作业人员是否佩戴防护面罩,提出了改进VGG-16的深度学习模型,构建了基于VGG-16的深度特征提取网络挖掘图像的重要信息。为解决VGG-16网络对图像局部特征和全局结构信息捕捉的不足,建立基于坐标注意力的空间位置信息感知机制,增强对图像位置和通道信息的关注。最后,建立基于多层全连接层的分类网络输出识别结果。实验表明,该模型对打磨焊接作业人员是否佩戴防护面罩的识别准确率、精确率、召回率和F1分数分别达到95.88%、96.48%、95.25%和95.86%,具有比传统人工巡检方法更好的效果。 展开更多
关键词 打磨焊接作业 防护面罩 坐标注意力机制 vgg-16网络 深度学习 卷积神经网络(CNN) 智能识别
下载PDF
基于改进VGG16网络的半监督石刻表层裂缝识别
2
作者 张英浩 冯晅 +7 位作者 赵鹏飞 董泽君 周皓秋 张明贺 安娅菲 杨佳润 王宇恒 王刘磊 《世界地质》 CAS 2024年第3期444-451,共8页
针对如何快速准确地检测石刻表层裂缝问题,笔者建立一种改进的VGG16网络模型,将原本的3层全连接层改为2层全连接层,增加dropout正则化,并结合使用半监督学习算法,将深度学习应用于石刻表层裂缝的智能识别研究。为了检验改进后模型的性... 针对如何快速准确地检测石刻表层裂缝问题,笔者建立一种改进的VGG16网络模型,将原本的3层全连接层改为2层全连接层,增加dropout正则化,并结合使用半监督学习算法,将深度学习应用于石刻表层裂缝的智能识别研究。为了检验改进后模型的性能与准确性,选用Unet、ResNet以及原模型进行比较,使用精确率、召回率和训练时间等对模型进行综合评估。改进后的VGG16网络模型精度达到93.6%,且训练时间较原模型减少了18%,具有轻量化运算的优点,模型可以满足基本的表层裂缝识别需求,且具有较好的鲁棒性。 展开更多
关键词 石刻 表层裂缝识别 半监督算法 改进VGG16网络
下载PDF
基于改进的VGG-16卷积神经网络的肺结节检测 被引量:8
3
作者 曹宇 邢素霞 +4 位作者 逄键梁 王孝义 王瑜 潘子妍 申楠 《中国医学物理学杂志》 CSCD 2020年第7期940-944,共5页
针对肺结节特征复杂、人工提取特征困难的问题,提出基于改进的VGG-16卷积神经网络的肺结节检测模型。首先采用阈值分割与处理最大连通区域后的图像进行掩模运算,得到肺实质部分。然后通过Regionprops标记每个连通区域序号分割出所有疑... 针对肺结节特征复杂、人工提取特征困难的问题,提出基于改进的VGG-16卷积神经网络的肺结节检测模型。首先采用阈值分割与处理最大连通区域后的图像进行掩模运算,得到肺实质部分。然后通过Regionprops标记每个连通区域序号分割出所有疑似结节;采用核函数极限学习机而不是Softmax函数作为VGG-16结构中的分类器。最后利用改进后的VGG-16模型去除假阳性结节,完成对肺结节检测。在LIDC-IDRI数据集上进行的实验表明改进后的模型能达到92.56%的准确率和94.44%的高敏感度。该模型可用于辅助医生进行肺结节诊断,具有一定的临床应用价值。 展开更多
关键词 肺结节 vgg-16 极限学习机 卷积神经网络
下载PDF
基于VGG-16神经网络图像风格迁移模型
4
作者 李恭伟 《软件》 2023年第4期148-151,共4页
图像风格迁移是人工智能进行艺术创造的一个重要方向。传统风格迁移技术通过逐像素迭代得到风格图片,训练耗时且迁移效果一般,无法广泛地应用于微端设备上。针对此问题,本文提出了一款轻量的图像风格迁移模型,该模型能够充分利用VGG-16... 图像风格迁移是人工智能进行艺术创造的一个重要方向。传统风格迁移技术通过逐像素迭代得到风格图片,训练耗时且迁移效果一般,无法广泛地应用于微端设备上。针对此问题,本文提出了一款轻量的图像风格迁移模型,该模型能够充分利用VGG-16卷积网络强大的图像特征提取功能。通过优化兼顾了图像内容和风格信息的损失函数,该模型能够在短时间内完成图像的风格学习,并迁移运用到目标图片上,所得到的迁移图片效果优于传统风格迁移技术。 展开更多
关键词 风格迁移 vgg-16 损失函数 卷积神经网络
下载PDF
改进的VGG-16卷积神经网络算法在丁腈橡胶片材识别中的应用 被引量:3
5
作者 何琛 李云红 谢蓉蓉 《西安工程大学学报》 CAS 2021年第2期41-47,共7页
针对VGG-16卷积神经网络识别丁腈橡胶片材时,出现了过拟合、参数量大、准确率较低的问题,提出在缩减原网络深度基础上改进的VGG-16卷积神经网络识别算法。通过嵌入多分辨率分组卷积、混合池化取代最大池化、增加自适配归一化(switchable... 针对VGG-16卷积神经网络识别丁腈橡胶片材时,出现了过拟合、参数量大、准确率较低的问题,提出在缩减原网络深度基础上改进的VGG-16卷积神经网络识别算法。通过嵌入多分辨率分组卷积、混合池化取代最大池化、增加自适配归一化(switchable normalization,SN)的方法,优化了网络结构。实验结果表明:该方法训练时未出现过拟合,参数量约下降至VGG-16的0.098%,相对仅缩减深度的VGG-16网络,识别准确率提高了7.17%,算法可应用于某些固体火箭发动机内绝热层材料的识别。 展开更多
关键词 丁腈橡胶片材 卷积神经网络 vgg-16 归一化 混合池化 多分辨率分组卷积
下载PDF
基于VGG-16卷积神经网络的水稻疾病识别小程序
6
作者 王思伟 张婷婷 薛明亮 《电脑与信息技术》 2023年第4期20-23,共4页
微信小程序用户群体多、范围广、操作灵活便捷等优点得到广泛使用,其“用完即走”的特点非常适合于解决农民对常见水稻虫害识别不熟悉的而导致农药滥用错用问题。为了实现自然场景下害虫实时精准被识别,构建基于VGG-16卷积神经网络的水... 微信小程序用户群体多、范围广、操作灵活便捷等优点得到广泛使用,其“用完即走”的特点非常适合于解决农民对常见水稻虫害识别不熟悉的而导致农药滥用错用问题。为了实现自然场景下害虫实时精准被识别,构建基于VGG-16卷积神经网络的水稻害虫智能识别模型。根据水稻的叶片特征和发病自然场景,对VGG-16网络的卷积层局部调整,优化主要模型参数,实现针对水稻疾病的智能识别,在测试集上的平均准确率是91.3%,该小程序通过微信开发者工具进行编译,应用WXML、WXSS和Java Script技术,VGG卷积神经网络模型导入常见水稻虫害的数据集训练针对水稻的虫害识别模型,通过Https请求来调用远程服务器运行的模型应用,从而实现小程序识别多种常见水稻疾病的功能。该小程序平台能够帮助用户方便快捷地查询到水稻虫害类别,代替以往传统的农学专家人工辨认的过程,能够快速地进行根据农作物疾病类型进行对应的处理,有效提高水稻病害的防治率,实现精准防治的目标。 展开更多
关键词 水稻疾病 智能识别 微信小程序 vgg-16 卷积神经网络
下载PDF
基于改进VGG-16神经网络的图像分类方法 被引量:10
7
作者 田佳鹭 邓立国 《计算技术与自动化》 2021年第2期131-135,共5页
为提高图像分类模型的准确度,提出了一种迁移学习VGG-16并对其进行改进的图像分类方法,即NewVGG-16模型。首先从ImageNet数据集中选取十种不同类型的部分图像数据,进行去噪、标准化等预处理;接着迁移学习VGG-16模型同时将其改进,模型的... 为提高图像分类模型的准确度,提出了一种迁移学习VGG-16并对其进行改进的图像分类方法,即NewVGG-16模型。首先从ImageNet数据集中选取十种不同类型的部分图像数据,进行去噪、标准化等预处理;接着迁移学习VGG-16模型同时将其改进,模型的优化包括改进池化层为sort_pool2d,在每个卷积层后面添加BN层以增强规范性,并选用Adaboost分类器提升整体的分类性能。通过训练集实现模型参数的调整,用测试集检验其准确性。实验证明,该模型能有效提升图像分类的准确性和适用性,准确度可达到98.75%。 展开更多
关键词 vgg-16 卷积神经网络 图像分类 迁移学习 ADABOOST
下载PDF
时频特征联合VGG-16的风力发电机齿轮箱故障诊断方法 被引量:2
8
作者 于大海 郝俊红 高严 《自动化应用》 2023年第17期72-74,78,共4页
针对传统风力发电机齿轮箱故障诊断存在效率低、实时性较差、准确率偏低等问题,本文提出了一种时频特征联合深度学习的风力发电机齿轮箱故障诊断方法。通过实时测取的箱体振动信号,利用离散小波转换提取信号的时频特征,并联合改进的VGG... 针对传统风力发电机齿轮箱故障诊断存在效率低、实时性较差、准确率偏低等问题,本文提出了一种时频特征联合深度学习的风力发电机齿轮箱故障诊断方法。通过实时测取的箱体振动信号,利用离散小波转换提取信号的时频特征,并联合改进的VGG-16模型,完成齿轮组不同类型故障的诊断。实验结果表明,所设计诊断方法的Recall和mAP值较高,分别为93.51%、91.85%;断齿、磨损以及根裂故障的诊断准确率均在90%以上,且检测实时性良好,能较好地满足实际应用需求。 展开更多
关键词 时频特征 改进 vgg-16 离散小波 故障诊断
下载PDF
基于VGG-16卷积神经网络的海水养殖病害诊断 被引量:4
9
作者 李海涛 王腾 王印庚 《计算机系统应用》 2020年第7期222-227,共6页
海水养殖生物在养殖过程中会受到各种病害的影响,病斑特征的差异性非常适合利用图像识别技术做诊断.基于以上需求,本文设计了一种基于VGG-16卷积神经网络的海水养殖病害诊断模型,并采用随机梯度下降算法、防止过拟合技术来改进模型.实... 海水养殖生物在养殖过程中会受到各种病害的影响,病斑特征的差异性非常适合利用图像识别技术做诊断.基于以上需求,本文设计了一种基于VGG-16卷积神经网络的海水养殖病害诊断模型,并采用随机梯度下降算法、防止过拟合技术来改进模型.实验结果显示,本研究模型相比其他传统网络模型效果更好,具有很高的识别精度、鲁棒性和泛化能力,可以准确快速地进行病害诊断,具有一定的扩展性和推广价值. 展开更多
关键词 海水养殖 病害诊断 卷积神经网络 vgg-16
下载PDF
基于改进VGG-16和朴素贝叶斯的手写数字识别 被引量:11
10
作者 王梅 李东旭 《现代电子技术》 北大核心 2020年第12期176-181,186,共7页
为了解决手写数字识别困难和准确率问题,提出基于改进VGG-16和朴素贝叶斯的手写数字识别,主要通过归一化和双线性插值对图像进行预处理,然后通过改进的VGG-16网络框架对图像进行特征提取和特征融合,通过LDA方法进行数据降维,最后通过朴... 为了解决手写数字识别困难和准确率问题,提出基于改进VGG-16和朴素贝叶斯的手写数字识别,主要通过归一化和双线性插值对图像进行预处理,然后通过改进的VGG-16网络框架对图像进行特征提取和特征融合,通过LDA方法进行数据降维,最后通过朴素贝叶斯分类器进行分类。在MNIST数据集中进行实验,获得了99.36%的准确率。实验结果验证了卷积神经网络与朴素贝叶斯结合后可以有效地提高识别准确率。 展开更多
关键词 手写数字识别 vgg-16网络 朴素贝叶斯分类器 图像预处理 特征提取 数据降维
下载PDF
基于改进的VGG-16模型的花卉识别小程序设计
11
作者 王芳 郑圣勇 《信息与电脑》 2022年第11期157-159,共3页
由于花卉种类繁多,花卉的识别需要人们掌握深厚的植物学知识和长期观察的经验总结,而利用深度学习可实现花卉种类的智能识别。首先,通过迁移学习在视觉几何群网络(Visual Geometry Group Network,VGG-16)算法的基础上进行改进,实现花卉... 由于花卉种类繁多,花卉的识别需要人们掌握深厚的植物学知识和长期观察的经验总结,而利用深度学习可实现花卉种类的智能识别。首先,通过迁移学习在视觉几何群网络(Visual Geometry Group Network,VGG-16)算法的基础上进行改进,实现花卉的识别;其次,将训练好的模型进行封装,上传至云服务器;最后,在云服务器上进行识别,通过超文本传输协议(Hyper Text Transfer Protocol,HTTP)与微信小程序进行通信,实现了拍照上传即可识别花卉种类和了解花卉特性的小程序设计。 展开更多
关键词 迁移学习 视觉几何群网络(vgg-16)算法 微信小程序 植物识别与科普
下载PDF
基于迁移学习的VGG-16网络芯片图像分类 被引量:9
12
作者 马俊 张荣福 +4 位作者 郭天茹 张喆嫣 李卿 王蓉 李子莹 《光学仪器》 2020年第3期21-27,共7页
针对芯片图像分类过程中图像数量过少、需要大量人工标注以及效率低的问题,提出一种基于迁移学习的VGG-16网络芯片图像分类方法。该方法通过VGG-16网络直接从原始像素中自动学习图像特征,有效减少人工标注的成本,同时对比了VGG-16网络... 针对芯片图像分类过程中图像数量过少、需要大量人工标注以及效率低的问题,提出一种基于迁移学习的VGG-16网络芯片图像分类方法。该方法通过VGG-16网络直接从原始像素中自动学习图像特征,有效减少人工标注的成本,同时对比了VGG-16网络模型和基于迁移学习的VGG-16网络模型的准确率及其混淆矩阵。实验结果表明,所提出的基于迁移学习的VGG-16网络模型对芯片图像分类效果要优于原VGG-16网络模型。 展开更多
关键词 图像分类 卷积神经网络 迁移学习 vgg-16
下载PDF
基于改进VGG-16模型的英文笔迹鉴别方法 被引量:7
13
作者 何凯 马红悦 +1 位作者 冯旭 刘坤 《天津大学学报(自然科学与工程技术版)》 EI CSCD 北大核心 2020年第9期984-990,共7页
笔迹鉴别是通过对待测文本和样本笔迹的相似度进行比较,来判定笔迹是否相同的一种检验技术,其在司法鉴定、法庭科学以及金融领域合同确认等多个领域都有广泛的应用.传统英文笔迹鉴别方法是通过比对被鉴别文本与模板的相似程度来实现,效... 笔迹鉴别是通过对待测文本和样本笔迹的相似度进行比较,来判定笔迹是否相同的一种检验技术,其在司法鉴定、法庭科学以及金融领域合同确认等多个领域都有广泛的应用.传统英文笔迹鉴别方法是通过比对被鉴别文本与模板的相似程度来实现,效率低,准确度差.近年来,随着深度神经网络技术的飞速发展,利用其自主学习的优势提取相关特征,可以大大提高笔迹鉴别的准确率.传统VGG-16模型在图像分类上一直表现良好,但由于网络结构一直采用顺次连接的方式,导致训练时间过长,参数调整难度大,且不能很好地提取图像的细微特征,因此对笔迹鉴定的效果不够理想.本文通过对传统VGG-16卷积神经网络模型进行改进,提出了一种CC-VGG网络模型,利用复合卷积层替换部分卷积层,实现了手写体英文笔迹的自动鉴别.在公开的CVL和ICDAR2013数据集上,该模型取得了较好的鉴别效果,平均正确率分别达到92.7%和86.9%,与现有算法相比准确率均有所提高.此外,建立了一个包含130类、共26000张图片的手写英文笔迹图像数据集EI130,在该数据集上该模型也取得了较高的准确率.与其他算法的对比实验证明了本文算法在训练时间上具有优越性;此外,在多个数据集上的实验结果也证明了本文算法的有效性和先进性. 展开更多
关键词 手写体笔迹鉴别 卷积神经网络 vgg-16模型 复合卷积
下载PDF
基于VGG-16的子宫颈癌变分级预测
14
作者 张丽艳 王娟 夏承遗 《天津理工大学学报》 2023年第5期21-28,共8页
为突破传统人工阅片诊断的局限性,提高对宫颈癌变的筛查效率与准确率,提出一种利用改进后的视觉几何群网络(visual geometry group network,VGG-16)实现女性宫颈病变分级预测的方法,并对原始图像中女性宫颈部位进行感兴趣区域提取及病... 为突破传统人工阅片诊断的局限性,提高对宫颈癌变的筛查效率与准确率,提出一种利用改进后的视觉几何群网络(visual geometry group network,VGG-16)实现女性宫颈病变分级预测的方法,并对原始图像中女性宫颈部位进行感兴趣区域提取及病变位置的定位与分割。在宫颈病变二分类的研究中,通过多次对比试验后,最终测得宫颈病变分级预测的准确率高达92.95%,与未经改进的方法相比,在时间复杂度与空间复杂度上都有明显的降低。试验表明:文中方法不仅能辅助放射科医生进行病变等级诊断,还可提高诊断的效率与准确率,在临床实践中具有重要意义。 展开更多
关键词 宫颈癌 宫颈病变定位 宫颈病变分割 病变分级预测 感兴趣区域 vgg-16网络
下载PDF
基于VGG-16卷积神经网络的水稻害虫智能识别研究 被引量:8
15
作者 钱蓉 孔娟娟 +2 位作者 朱静波 张萌 董伟 《安徽农业科学》 CAS 2020年第5期235-238,共4页
为了实现自然场景下水稻害虫实时精准被识别,构建基于VGG-16卷积神经网络的水稻害虫智能识别模型。该模型采用VGG-16卷积神经网络为核心网络结构,根据水稻害虫的个体特征和自然场景,对VGG-16网络的卷积层局部调整,优化主要模型参数,实... 为了实现自然场景下水稻害虫实时精准被识别,构建基于VGG-16卷积神经网络的水稻害虫智能识别模型。该模型采用VGG-16卷积神经网络为核心网络结构,根据水稻害虫的个体特征和自然场景,对VGG-16网络的卷积层局部调整,优化主要模型参数,实现水稻害虫的智能识别,其识别的平均准确率是90.7%,实现对沙叶蝉、大螟、斑须蝽、点蜂缘蝽和白背飞虱的准确识别。研究结果显示,采用卷积神经网络技术可以实现自然场景下害虫图像的精准识别,代替人工辨认,提高水稻害虫防治率,实现实时、精准防治的目标。 展开更多
关键词 水稻 害虫 智能识别 vgg-16 卷积神经网络
下载PDF
基于改进VGG-16的手写数字识别方法研究 被引量:1
16
作者 李凌云 《信息与电脑》 2021年第18期27-29,共3页
传统的朴素贝叶斯手写数字识别方法的识别效果差,准确率低。因此本文基于改进VGG-16设计了新的手写数字识别方法。处理手写数字图像,分割图像字符,在此基础上,基于改进VGG-16提取了手写数字特征,实现了手写数字识别。实验结果表明,设计... 传统的朴素贝叶斯手写数字识别方法的识别效果差,准确率低。因此本文基于改进VGG-16设计了新的手写数字识别方法。处理手写数字图像,分割图像字符,在此基础上,基于改进VGG-16提取了手写数字特征,实现了手写数字识别。实验结果表明,设计的手写数字识别方法准确率高,能快速进行特征识别,有一定的应用价值。 展开更多
关键词 改进vgg-16 手写数字识别 特征提取 数字降维
下载PDF
基于VGG-16的电商评论图像审核 被引量:1
17
作者 李兰 潘浩 《电子测试》 2022年第2期66-69,共4页
如今互联网电商平台中用户对于购买商品上传的点评图片质量参差不齐,影响其他用户的购物体验和对于商品质量的判断,电商公司通常通过人工审核来规避这种情况,然而大量的上传图片数据需要大量的人力进行运营审核,针对平台当前审核成本过... 如今互联网电商平台中用户对于购买商品上传的点评图片质量参差不齐,影响其他用户的购物体验和对于商品质量的判断,电商公司通常通过人工审核来规避这种情况,然而大量的上传图片数据需要大量的人力进行运营审核,针对平台当前审核成本过高的问题,本文设计了一种基于VGG-16卷积神经网络的电商评论图像分类模型,并采用随机梯度下降算法、防止过拟合技术来改进模型,通过迁移学习方法对评论图片进行识别分类从而实现评论图像的自动审核。实验结果显示,本研究模型相比其他传统网络模型效果更好,具有很高的识别精度、鲁棒性和泛化能力,可以准确快速完成对评论图像的分类筛选,且具有一定的扩展性。 展开更多
关键词 迁移学习 图像审核 卷积神经网络 vgg-16技术 随机梯度下降 防止过拟合
下载PDF
基于优化的VGG-16网络模型的煤矸识别研究
18
作者 黄可 樊玉萍 +1 位作者 董宪姝 马晓敏 《矿业研究与开发》 CAS 北大核心 2024年第9期219-226,共8页
针对复杂工况下煤矸识别效率低、分选难度大的问题,采用VGG-16网络搭建煤矸识别模型,对煤矸识别模型的识别准确率和识别环境影响因素进行了研究,并对VGG-16煤矸识别模型进行了优化。结果表明:(1)优化后的VGG-16网络模型准确率为97.00%,... 针对复杂工况下煤矸识别效率低、分选难度大的问题,采用VGG-16网络搭建煤矸识别模型,对煤矸识别模型的识别准确率和识别环境影响因素进行了研究,并对VGG-16煤矸识别模型进行了优化。结果表明:(1)优化后的VGG-16网络模型准确率为97.00%,单张煤矸图像识别时间为0.0697s,单张煤矸图像识别所用时间缩短了0.85%;(2)在不同水分、灰分和粉尘等环境因素下,煤矸识别模型的准确率均达到95%以上,其中水分对模型的识别准确率影响最大,表面浸润30 s比干燥的识别准确率低2.01个百分点;(3)鉴于煤与矸石的共伴生特性,对煤表面夹矸、矸表面带煤两种复杂情况进行了煤矸有效识别。研究表明:优化后的VGG-16网络模型具有一定的抗干扰能力,可以实现复杂情况下煤矸的高效精准识别,可为后续煤矸石智能化分选提供理论基础和技术支撑。 展开更多
关键词 煤矸识别 vgg-16网络模型 识别准确率 环境因素
原文传递
卷积神经网络的多尺度改进及其在玉米病害症状识别中的应用 被引量:14
19
作者 王美娟 尹飞 《河南农业大学学报》 CAS CSCD 2021年第5期906-916,共11页
为解决传统卷积神经网络模型训练时间长、参数量大、泛化能力弱等问题,提出了一种基于VGG-16的改进多尺度卷积神经网络模型。用一个叠加卷积层替换VGG-16模型的最后3×3×512卷积层,并进行批归一化处理,提高模型训练速度;用全... 为解决传统卷积神经网络模型训练时间长、参数量大、泛化能力弱等问题,提出了一种基于VGG-16的改进多尺度卷积神经网络模型。用一个叠加卷积层替换VGG-16模型的最后3×3×512卷积层,并进行批归一化处理,提高模型训练速度;用全局池化层替换全连接层,大大减少模型参数总量。利用Plant Village公共数据集(健康玉米叶片、灰斑病、锈病和叶枯病叶片)结合大田试验采集的玉米病害图像数据对改进后模型进行训练和测试,并与常见的传统卷积神经网络模型进行对比。结果表明,模型参数和收敛时间均小于传统卷积神经网络,单一背景下的平均分类识别准确率达99.31%,明显优于传统神经网络模型(VGG-16的90.89%、ResNet-50的93.60%、Inception-V3的94.23%、MobileNet-V2的93.83%和DenseNet-201的95.70%)。同时,利用大田复杂背景病害图片测试新模型的泛化性,识别准确率达98.44%,单张图片测试平均仅需0.25 s。 展开更多
关键词 玉米 病害种类识别 多尺度卷积神经网络 vgg-16 全局池化 批归一化
下载PDF
基于改进ResNet-50残差网络的纤维分类方法 被引量:8
20
作者 黄烜 孙晗 +2 位作者 林博生 殷明骏 杨志军 《西安工程大学学报》 CAS 2022年第4期19-25,共7页
针对目前常见的纤维分类技术中,分类结果受人的主观影响大、检测设备昂贵、检测时间长等问题,提出一种基于ImageNet数据集预训练的改进ResNet-50残差神经网络分类方法,并对4种纤维结构较相似的动物毛发纤维进行分类。使用自建训练集和... 针对目前常见的纤维分类技术中,分类结果受人的主观影响大、检测设备昂贵、检测时间长等问题,提出一种基于ImageNet数据集预训练的改进ResNet-50残差神经网络分类方法,并对4种纤维结构较相似的动物毛发纤维进行分类。使用自建训练集和测试集,以TensorFlow和Keras为框架,利用ResNet-50和VGG-16的基础模型进行验证;再通过加入Dropout层和数据增强策略等方式,改进ResNet-50的网络结构和参数并重新训练;最后使用测试集进行评估,得到新网络模型在测试集上的混淆矩阵并对比各项性能指标。结果表明,改进后的ResNet-50网络模型平均准确率98.88%,综合评估分数98.88%,有更优的综合分类性能。 展开更多
关键词 纤维分类 残差神经网络 ResNet-50 vgg-16 迁移学习
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部