针对原VPMCD方法在参数估计过程中存在的缺陷,用BP神经网络非线性回归方法代替原方法中的最小二乘法,解决了最小二乘法中存在的病态问题,因此,提出了改进多变量预测模型(Variable predictive mode based class discriminate,简称VPMCD)...针对原VPMCD方法在参数估计过程中存在的缺陷,用BP神经网络非线性回归方法代替原方法中的最小二乘法,解决了最小二乘法中存在的病态问题,因此,提出了改进多变量预测模型(Variable predictive mode based class discriminate,简称VPMCD)的滚动轴承故障诊断方法.首先采用总体经验模态分解(Ensemble empirical mode decomposition,简称EEMD)方法对滚动轴承振动信号进行分解得到若干个单分量信号,然后提取各分量奇异值组成特征向量作为改进VPMCD的输入,最后对滚动轴承工作状态和故障类型进行识别.实验结果表明,该方法能够有效地应用于滚动轴承故障诊断.展开更多
文摘针对原VPMCD方法在参数估计过程中存在的缺陷,用BP神经网络非线性回归方法代替原方法中的最小二乘法,解决了最小二乘法中存在的病态问题,因此,提出了改进多变量预测模型(Variable predictive mode based class discriminate,简称VPMCD)的滚动轴承故障诊断方法.首先采用总体经验模态分解(Ensemble empirical mode decomposition,简称EEMD)方法对滚动轴承振动信号进行分解得到若干个单分量信号,然后提取各分量奇异值组成特征向量作为改进VPMCD的输入,最后对滚动轴承工作状态和故障类型进行识别.实验结果表明,该方法能够有效地应用于滚动轴承故障诊断.