期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
改进YOLOv5s的钢材表面缺陷检测算法 被引量:1
1
作者 吕秀丽 卢海滨 +1 位作者 侯春光 王志刚 《化工自动化及仪表》 CAS 2024年第2期301-309,共9页
为提高钢材表面缺陷检测的准确率,提出一种改进YOLOv5s的钢材表面缺陷检测算法。首先,在特征提取网络中引入Swin Transformer结构,增强网络对特征的感知能力;其次,添加坐标注意力机制,加强对重要特征信息的关注;最后,针对钢材缺陷的特... 为提高钢材表面缺陷检测的准确率,提出一种改进YOLOv5s的钢材表面缺陷检测算法。首先,在特征提取网络中引入Swin Transformer结构,增强网络对特征的感知能力;其次,添加坐标注意力机制,加强对重要特征信息的关注;最后,针对钢材缺陷的特点增加检测层,提升多尺度目标检测能力,并使用SIOU损失函数评估检测效果。将所提出的算法在公开数据集NEU-DET上进行消融实验,结果表明:所提算法能有效提高钢材表面缺陷目标检测的准确率。 展开更多
关键词 缺陷检测 深度学习 改进yolov5s swin Transformer 注意力机制
下载PDF
基于机器视觉和改进YOLOv5s的鲫病害轻量级无损检测模型 被引量:1
2
作者 陈科 周勇 +4 位作者 薛明洋 朱松明 赵建 蔡海莺 叶章颖 《水生生物学报》 CAS CSCD 北大核心 2024年第7期1141-1148,共8页
以鲫(Carassius auratus)常见病害为例,从实际生产角度出发,提出了一种基于机器视觉和改进YOLOv5s的鲫病害轻量级无损检测模型,可实现鲫鱼体多种病害的同步无损快速检测。首先,通过利用Shuf-fleNetV2替换YOLOv5s主干网络,对模型进行轻... 以鲫(Carassius auratus)常见病害为例,从实际生产角度出发,提出了一种基于机器视觉和改进YOLOv5s的鲫病害轻量级无损检测模型,可实现鲫鱼体多种病害的同步无损快速检测。首先,通过利用Shuf-fleNetV2替换YOLOv5s主干网络,对模型进行轻量化改进;在此基础上,耦合一种基于卷积块的注意力机制[Convolutional block attention module(CBAM)]提高模型精准度;最后,结合空洞空间卷积池化金字塔[Atrous spatial pyramid pooling(ASPP)]提升模型鲁棒性。通过在自制鲫病害数据集上测试可知,文章所提出模型病害检测精确率可达92.0%,模型体积仅为14400 kb,优于当前相关主流模型(最高精确率为83.6%,最小体积为15750 kb),为水产养殖鱼类病害无损快速检测提供了技术支撑。 展开更多
关键词 水产养殖 鲫病害 无损检测 改进yolov5s 轻量级
下载PDF
改进YOLOv5s算法的车辆目标实时检测方法 被引量:1
3
作者 陈秀锋 王成鑫 +1 位作者 吴阅晨 谷可鑫 《哈尔滨理工大学学报》 CAS 北大核心 2024年第1期107-114,共8页
针对城市道路车辆检测中小目标车辆漏检率高和存在异类冗余框的问题,提出一种改进YOLOv5s的车辆实时检测算法。对YOLOv5s算法网络结构进行优化,采用增加小目标检测层,将浅层特征图与深层特征图拼接后进行检测的方法,提升小目标车辆的检... 针对城市道路车辆检测中小目标车辆漏检率高和存在异类冗余框的问题,提出一种改进YOLOv5s的车辆实时检测算法。对YOLOv5s算法网络结构进行优化,采用增加小目标检测层,将浅层特征图与深层特征图拼接后进行检测的方法,提升小目标车辆的检测率;针对异类冗余框问题,采用加权非极大值抑制融合两边框信息的方法,提升检测准确性。实验结果表明,改进YOLOv5s算法的平均检测精度(mAP@0.5∶0.95)达到64.17%,相比YOLOv5s算法,查准率、召回率分别提高1.72%、0.72%;在小目标车辆检测中,正检率提高5.95%,漏检率降低4.63%。改进YOLOv5s算法能有效改善小目标车辆的检测精度和准确率。 展开更多
关键词 车辆检测 深度学习 改进yolov5s算法 小目标检测 异类冗余框
下载PDF
基于CWT和改进YOLOv5s的港口机械轴承故障诊断策略分析 被引量:1
4
作者 李铁 《中国设备工程》 2024年第5期168-170,共3页
轴承故障诊断常用的方法是振动分析,分析和预处理收集的振动信号。然而,轴承的振动信号具有不均匀的特性,这使得提取特性特别困难。在此基础上,本文将CWT和改进的YOLOv5S结合港口机械轴承故障进行研究,然后研究基于CWT和改进的YOLOv5S... 轴承故障诊断常用的方法是振动分析,分析和预处理收集的振动信号。然而,轴承的振动信号具有不均匀的特性,这使得提取特性特别困难。在此基础上,本文将CWT和改进的YOLOv5S结合港口机械轴承故障进行研究,然后研究基于CWT和改进的YOLOv5S港口机械轴承故障诊断策略,旨在为有关人员提供参考帮助。 展开更多
关键词 CWT和改进yolov5s 港口机械轴承 故障诊断策略
下载PDF
基于改进YOLOv5s的建筑护栏目标检测
5
作者 俞恺 洪涛 厉勋 《现代电子技术》 北大核心 2024年第14期135-141,共7页
目前,建筑场所上仍存在因建筑护栏缺失或建筑护栏安全性降低而导致的建筑工人高空坠亡事件。针对该问题,提出一种基于改进YOLOv5s的建筑护栏检测算法。首先,针对建筑护栏普遍存在的安全隐患,收集影响护栏安全性较大的情况的图像,例如:... 目前,建筑场所上仍存在因建筑护栏缺失或建筑护栏安全性降低而导致的建筑工人高空坠亡事件。针对该问题,提出一种基于改进YOLOv5s的建筑护栏检测算法。首先,针对建筑护栏普遍存在的安全隐患,收集影响护栏安全性较大的情况的图像,例如:建筑护栏栏板的存在图像、建筑护栏栏板的缺失图像、护栏网图像、护栏栏板衔接错位图像和护栏栏板衔接正确图像等,并且制作成训练数据集。为提升YOLOv5s在复杂环境下多目标检测任务和区分任务结果的准确率,将新型的Biformer注意力机制与SE注意力机制相结合,嵌入到原模型的特征提取网络中,并利用CBAMC3取代原特征提取网络的C3模块。最后,使用CLAHE算法较大程度地解决部分图像亮度偏暗,影响检测精度的问题。实验结果表明,所提检测算法的mAP50值和召回率分别达到了79.6%和83%,相比于原YOLOv5s算法分别提高了3.7%和6.8%。 展开更多
关键词 目标检测 建筑护栏 改进yolov5s Biformer注意力机制 CBAMC3 CLAHE算法
下载PDF
基于改进YOLOv5s的航拍红外图像目标识别方法
6
作者 王悠 韩立祥 付贵 《红外技术》 CSCD 北大核心 2024年第7期775-781,801,共8页
为了提高无人机在黑暗条件下的识别效率,降低在复杂环境及路况方面存在漏检及延时效果等问题,本文提出了一种改进的YOLOv5s-GN-CB红外图像识别方法,该方法可以提高无人机红外航拍图像对车、人等多类目标识别效率。本文对YOLOv5s的主要... 为了提高无人机在黑暗条件下的识别效率,降低在复杂环境及路况方面存在漏检及延时效果等问题,本文提出了一种改进的YOLOv5s-GN-CB红外图像识别方法,该方法可以提高无人机红外航拍图像对车、人等多类目标识别效率。本文对YOLOv5s的主要改进包括以下3个方面:将Ghost引入到YOLOv5s主干网络中,并将NWD loss损失函数融入至Ghost中;添加注意力机制CA;添加加权双向特征金字塔BiFPN。经验证,改进的YOLOv5s-GN-CB检测模型在InfiRay红外航拍人车检测数据集下目标识别平均精度均值(mAP@0.5)达到95.1%,FPS提高至75.188帧/s。相较于YOLOv5原始模型的平均精度均值和FPS分别提高了4.2%和12.02%。在对同一场景中无人机航拍红外图像目标识别的检测精度有明显提升,延时率有所下降。 展开更多
关键词 红外目标检测 改进yolov5s Ghost网络 注意力机制
下载PDF
一种基于改进YOLOv5s的手势识别算法
7
作者 鲁杰伟 盘轩 +1 位作者 彭雯蝶 谌爱文 《电脑知识与技术》 2024年第12期1-3,共3页
手势识别作为一种重要的人机交互技术,在智能设备、智能交通等领域具有广泛应用前景。然而,现有基于YO⁃LOv5s的手势识别算法在目标检测准确率和效率方面存在一定问题。这是由于YOLOv5s在目标检测阶段存在相似手势区分能力较弱以及检测... 手势识别作为一种重要的人机交互技术,在智能设备、智能交通等领域具有广泛应用前景。然而,现有基于YO⁃LOv5s的手势识别算法在目标检测准确率和效率方面存在一定问题。这是由于YOLOv5s在目标检测阶段存在相似手势区分能力较弱以及检测结果重叠和重复的原因。为解决这一问题,本研究提出了一种改进YOLOv5s模型的手势识别算法。通过在目标检测阶段引入动态稀疏注意力BiFormer模块来优化长序列数据处理,对YOLOv5s模型进行改进,从而提高了手势识别的准确率和效率。实验结果表明,改进后的模型在处理小目标和相似手势时表现更为优异,同时能够有效避免检测结果的重叠和重复现象。 展开更多
关键词 手势识别 yolov5s 改进yolov5s模型 目标检测 动态稀疏注意力
下载PDF
基于改进YOLOv5s小目标检测算法
8
作者 刘艺 吴路路 +1 位作者 邓湘琳 杜欣 《安徽科技学院学报》 2024年第4期69-77,共9页
目的:针对现有目标检测算法进行小目标检测时检测效果不理想、漏检率高的问题,提出一种改进的YOLOv5s检测算法,提升小目标检测效果。方法:在原有模型基础上,引入BottleneckCSP模块并增加大尺度特征融合结构,提升模型小目标特征捕捉能力... 目的:针对现有目标检测算法进行小目标检测时检测效果不理想、漏检率高的问题,提出一种改进的YOLOv5s检测算法,提升小目标检测效果。方法:在原有模型基础上,引入BottleneckCSP模块并增加大尺度特征融合结构,提升模型小目标特征捕捉能力;同时在网络结构中融合SE注意力机制,使得网络自主学习更关注小目标特征通道,增强网络模型对小目标的检测效果。结果:在同一自制小目标检测数据集上进行训练验证,与已有算法比较,能够有效提升YOLOv5s目标检测算法的mAP值和训练收敛速度,拓展小目标检测范围(由原有算法的0.002 5~0.010 0缩小至0.000 8~0.001 4),提高小目标检测性能(平均检测率提升46%)。结论:改进算法能够有效提升小目标的检测能力。 展开更多
关键词 改进yolov5s 小目标检测 BottleneckCsP 大尺度特征融合 sE注意力机制
下载PDF
改进YOLOv5s算法在交通标志检测识别中的应用
9
作者 郭君斌 于琳 于传强 《国防科技大学学报》 EI CAS CSCD 北大核心 2024年第6期123-130,共8页
针对复杂道路交通场景中交通标志检测识别精度低的问题,提出了一种改进YOLOv5s算法的目标检测识别方法。采用迭代自组织数据分析算法对TT100K数据集进行聚类分析选择更适合的先验框,新先验框能够更加全面地覆盖交通标志的尺寸,提高模型... 针对复杂道路交通场景中交通标志检测识别精度低的问题,提出了一种改进YOLOv5s算法的目标检测识别方法。采用迭代自组织数据分析算法对TT100K数据集进行聚类分析选择更适合的先验框,新先验框能够更加全面地覆盖交通标志的尺寸,提高模型的检测精度;对特征图进行上采样操作,获得更大尺度的特征图后与主干网络特征图融合,得到特征信息更加丰富的新特征图用来小目标的检测识别,提高了小目标检测识别的精度;用真实框和先验框宽比和高比的差值替代真实框和先验框宽高比的差值对定位损失函数进行改进,解决了宽高比相同但实际尺寸不同时惩罚消失问题。实验结果表明改进算法与YOLOv5s算法相比,提高了9.55%的平均精度均值,对小目标的检测识别具有更好的效果。 展开更多
关键词 深度学习 图像处理 改进yolov5s 交通标志 小目标检测
下载PDF
基于改进YOLOv5s的趸船钢丝绳缺陷检测算法
10
作者 杨宏亮 姜宇 《安全》 2024年第11期85-89,共5页
为提高钢丝绳开裂、抽丝图像的识别精度与召回率,本文提出一种基于改进YOLOv5s(you only look once,你只需看一次)的趸船钢丝绳缺陷检测算法。首先在YOLOv5s模型的基础上进行改进,改进方案包括:用特征重组算子(CARAFE)替代最近邻插值进... 为提高钢丝绳开裂、抽丝图像的识别精度与召回率,本文提出一种基于改进YOLOv5s(you only look once,你只需看一次)的趸船钢丝绳缺陷检测算法。首先在YOLOv5s模型的基础上进行改进,改进方案包括:用特征重组算子(CARAFE)替代最近邻插值进行上采样,以增强特征图的完整性;引入卷积注意模块(CBAM)强化重要特征通道;损失函数由完全交并比损失(CIoU_Loss)替换为扩展交并比损失(EIoU_Loss),以提高边框位置的精度;采用解耦合头减少计算量,提升模型性能与鲁棒性。随后,构建一个专门用于训练和测试的钢丝绳缺陷数据集。通过对比实验结果表明:改进后的YOLOv5s算法在召回率上提高了1.2%,平均精度均值提升了2.2%,呈现出更优的检测效果,并为未来的检测研究提供了理论基础。 展开更多
关键词 深度学习 钢丝绳缺陷检测 改进yolov5s算法 注意力机制 特征重组算子(CARAFE)
下载PDF
基于改进YOLOv5s的架空输电线路鸟类入侵检测方法 被引量:4
11
作者 裴少通 张善驰 《智慧电力》 北大核心 2023年第6期100-105,共6页
鸟类在输电线路周围活动愈加频繁,导致输电线路跳闸与停电等事故。为快速准确地检测出入侵输电线路区域中的鸟类目标,提出了一种基于改进YOLOv5s的架空输电线路鸟类入侵检测方法。首先,将特征提取网络中的普通卷积模块替换为嵌入CBAM注... 鸟类在输电线路周围活动愈加频繁,导致输电线路跳闸与停电等事故。为快速准确地检测出入侵输电线路区域中的鸟类目标,提出了一种基于改进YOLOv5s的架空输电线路鸟类入侵检测方法。首先,将特征提取网络中的普通卷积模块替换为嵌入CBAM注意力机制的卷积模块;其次,利用SPPF模块替代原有SPP模块,加强特征提取效果;最后,将Mish激活函数嵌入三次卷积(Conv×3,C3)模块中,提高模型的非线性学习能力。结合模型训练与测试结果验证了所提方法的有效性。 展开更多
关键词 输电线路 鸟类入侵 改进yolov5s CBAM sPPF
下载PDF
基于改进YOLOv5s的带式输送机滚筒故障检测研究 被引量:3
12
作者 苗长云 孙丹丹 《工矿自动化》 CSCD 北大核心 2023年第7期41-48,共8页
针对目前带式输送机滚筒故障检测方法检测效率低、识别准确率不高、特征提取能力较差等问题,提出了一种基于改进YOLOv5s的带式输送机滚筒故障检测方法。在YOLOv5s网络模型中增加了小尺寸检测层,使尺寸较小的滚筒故障更易被检测到;在Back... 针对目前带式输送机滚筒故障检测方法检测效率低、识别准确率不高、特征提取能力较差等问题,提出了一种基于改进YOLOv5s的带式输送机滚筒故障检测方法。在YOLOv5s网络模型中增加了小尺寸检测层,使尺寸较小的滚筒故障更易被检测到;在Backbone和Neck间引入卷积注意力机制(CBAM),提高目标检测的准确率;在Neck中引入高效通道注意力机制(ECA),增强对滚筒故障的特征提取能力。实验结果表明:①在满足实时检测要求的前提下,改进YOLOv5s网络模型识别平均准确率均值达94.46%,较改进前提升了1.65%。②改进YOLOv5s网络模型对滚筒开焊、包胶磨损和包胶脱落检测的平均准确率分别为95.29%,96.43%,91.65%,较改进前分别提高了1.56%,0.89%和2.50%。设计了基于改进YOLOv5s的带式输送机滚筒故障检测系统,并对该系统进行验证:①实验平台测试结果表明:基于改进YOLOv5s的带式输送机滚筒故障检测系统对滚筒开焊、包胶磨损和包胶脱落检测的平均准确率分别达95.29%,96.43%,91.65%,3种故障检测的平均准确率均值达94.46%,检测速度约为14帧/s。②现场测试结果表明:包胶磨损和包胶脱落的置信度分别为0.92,0.97,且能准确地识别出滚筒的故障类型和位置,说明基于改进YOLOv5s的带式输送机滚筒故障检测系统具有可行性。 展开更多
关键词 带式输送机 滚筒故障检测 改进yolov5s 小目标检测 卷积注意力机制 高效通道注意力机制
下载PDF
基于改进YOLOv5s的自然环境下猕猴桃花朵检测方法 被引量:11
13
作者 龚惟新 杨珍 +4 位作者 李凯 郝伟 何智 丁辛亭 崔永杰 《农业工程学报》 EI CAS CSCD 北大核心 2023年第6期177-185,共9页
为实现对猕猴桃花朵的快速准确检测,该研究提出了一种基于改进YOLOv5s的猕猴桃花朵检测模型YOLOv5s_S_N_CB_CA,并通过对比试验进行了精度验证。在YOLOv5s基础上引入C3HB模块和交叉注意力(criss-cross atte ntion,CCA)模块增强特征提取能... 为实现对猕猴桃花朵的快速准确检测,该研究提出了一种基于改进YOLOv5s的猕猴桃花朵检测模型YOLOv5s_S_N_CB_CA,并通过对比试验进行了精度验证。在YOLOv5s基础上引入C3HB模块和交叉注意力(criss-cross atte ntion,CCA)模块增强特征提取能力,结合样本切分和加入负样本处理方法进一步提升模型精度。改进模型的检测精确率为85.21%,召回率为90%,模型大小为14.6 MB,交并比(intersection over union,IoU)为0.5下的均值平均精度(mAP0.5)为92.45%,比仅进行样本缩放处理的原始YOLOv5s提高了31.91个百分点,检测速度为35.47帧/s,比原始YOLOv5s提高了34.15%。使用改进模型对自然环境下不同天气、晴天不同时段光照强度下的猕猴桃花朵进行检测,结果表明模型检测晴天、阴天下猕猴桃花朵的mAP0.5分别为91.96%、91.15%,比原始YOLOv5s分别高出2.55、2.25个百分点;检测晴天9:00-11:00、15:00-17:00光强下猕猴桃花朵的mAP0.5分别为92.11%、92.10%,比原始YOLOv5s分别高出2.20、1.32个百分点。结果表明,该研究提出的基于改进YOLOv5s的猕猴桃花朵检测模型在保持轻量化的同时,检测精度高、速度快,可实现对自然环境下猕猴桃花朵的有效检测。 展开更多
关键词 图像处理 模型 目标检测 猕猴桃花朵 改进yolov5s 自然环境
下载PDF
基于改进YOLOv5s模型的山地果园单轨运输机搭载柑橘的检测 被引量:1
14
作者 周岳淮 李震 +4 位作者 左嘉明 龚琬蓉 吕石磊 温威 黄莺 《湖南农业大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第4期491-496,共6页
由于山地果园运输机立地条件差,实时作业信息的获取、反馈、集中化管理较为困难,为了解7SYDD-200型山地果园单轨运输机搭载货物情况,合理调度运输装备,建立了基于改进的YOLOv5s模型的运输机搭载柑橘果筐的检测方法:在果园自然光环境下使... 由于山地果园运输机立地条件差,实时作业信息的获取、反馈、集中化管理较为困难,为了解7SYDD-200型山地果园单轨运输机搭载货物情况,合理调度运输装备,建立了基于改进的YOLOv5s模型的运输机搭载柑橘果筐的检测方法:在果园自然光环境下使用RGB相机(HSK-200)采集运输机搭载柑橘果筐的图像数据;建立和优化YOLOv5s模型,部署至嵌入式设备,实现对搭载过程中的“空果筐”“柑橘”“满果筐”状态的检测。在模型的颈部网络引入CBAM注意力机制,加强模型提取语义信息的能力,解决检测过程中出现的“双重标签”的问题,使用批归一化(BN)层稀疏的尺度因子衡量各通道对模型的表征能力,并对表征能力弱的通道进行剪枝压缩,以克服基模型YOLOv5s检测速度慢的问题,通过多尺度训练策略对模型进行微调,提高模型检测准确率。试验结果表明:改进YOLOv5s模型的检测方法在柑橘搭载数据集上平均精度均值(m AP)为93.3%;模型的浮点数运算量和大小分别为9.9GFLOPs和3.5 MB,比YOLOv5s的提高60.3%和21.3%;在嵌入式平台Jetson Nano部署,其检测速度为78 ms/帧。 展开更多
关键词 山地果园单轨运输机 目标检测 剪枝压缩 CBAM注意力机制 改进yolov5s
下载PDF
改进YOLOv5s无人机航拍图像目标检测 被引量:3
15
作者 李甜 林贵敏 +5 位作者 施文灶 庄镇榕 杨玮琪 孙雯婷 温鹏宇 王磊 《闽江学院学报》 2023年第5期51-62,共12页
针对无人机视觉下密集小目标难以检测或检测精度低的问题,在YOLOv5s的基础上从特征融合和注意力机制两个角度出发,提出一种改进的无人机航拍图像目标检测算法。在VisDrone2019数据集上进行实验,与传统YOLOv5s算法相比,mAP@.5由原来的31... 针对无人机视觉下密集小目标难以检测或检测精度低的问题,在YOLOv5s的基础上从特征融合和注意力机制两个角度出发,提出一种改进的无人机航拍图像目标检测算法。在VisDrone2019数据集上进行实验,与传统YOLOv5s算法相比,mAP@.5由原来的31.0%提高到了41.0%,提高了10个百分点。实验结果表明改进后的YOLOv5s算法明显优于传统算法,相较于其他一些主流算法,检测精度也有明显提升。 展开更多
关键词 无人机 小目标检测 改进yolov5s 特征融合 注意力机制
下载PDF
基于改进YOLOv5s的麦穗检测与计数 被引量:1
16
作者 高伟 沈克宇 邵仕泉 《信息技术与信息化》 2022年第11期105-107,111,共4页
为了快速准确地检测麦穗并计数,特提出改进YOLOv5s的麦穗检测与计数的轻量网络模型PY-bckbone。首先,基于PP-LCNet轻量网络结构,对YOLO(you only look once)v5s的特征提取网络进行替换,减少网络参数和计算量;其次,为提高检测精度,在网... 为了快速准确地检测麦穗并计数,特提出改进YOLOv5s的麦穗检测与计数的轻量网络模型PY-bckbone。首先,基于PP-LCNet轻量网络结构,对YOLO(you only look once)v5s的特征提取网络进行替换,减少网络参数和计算量;其次,为提高检测精度,在网络特征提取处加入坐标注意力机制,并且对颈部特征融合处的卷积层做改动,提升模型在复杂麦田背景下检测目标的能力,最后,将改进后的模型与其它经典模型进行麦穗检测与计数实验对比。结果表明:均值平均精度值为94.2%,分别比Faster RCNN、 SSD、YOLOv4-tiny、Yolov5s提高的百分点数为6.79、32.75、22.08、1.1;参数量比YOLOv5s减少了28%,计算量减少了42%。与传统检测网络相比,该模型在麦田复杂场景下具有较好较快的检测能力。 展开更多
关键词 麦穗检测与计数 改进yolov5s PP-LCNet 坐标注意力
下载PDF
基于YOLOv5s和Android部署的电气设备识别 被引量:1
17
作者 廖晓辉 谢子晨 路铭硕 《郑州大学学报(工学版)》 北大核心 2024年第1期122-128,共7页
针对变电站多种电气设备实时检测的需求,提出了一种基于改进YOLOv5s的电气设备识别方法,并设计基于Android部署的电气设备识别APP,以便对电气设备进行识别与学习。以电力变压器、绝缘子串等6种常见变电站电气设备为例构建图像数据集。... 针对变电站多种电气设备实时检测的需求,提出了一种基于改进YOLOv5s的电气设备识别方法,并设计基于Android部署的电气设备识别APP,以便对电气设备进行识别与学习。以电力变压器、绝缘子串等6种常见变电站电气设备为例构建图像数据集。数据集进行图像预处理后对YOLOv5s算法进行改进。通过引入C2f模块提高小目标检测精度,采用Soft-NMS提高检测框筛选能力,减少漏检和误检的情况,使用改进后的算法对数据集进行模型训练。将训练好的识别网络模型通过TensorFlow Lite框架进行模型部署,设计电气设备识别APP。经验证,改进后的变电站电气设备识别网络模型mAP稳定在91.6%,与原模型相比提高了3.3百分点。部署后的APP具有设备识别和设备介绍等界面,使用移动端进行识别时每张图片识别时间都小于1 s,具有较快的识别速度和较高的识别精度,可以高效地实现变电站电气设备的实时检测与设备学习。 展开更多
关键词 电气设备 改进yolov5s ANDROID TensorFlow Lite 图像识别
下载PDF
基于轻量化YOLOv5s的安全帽佩戴检测算法
18
作者 高东 刘丽娟 《电视技术》 2024年第6期88-94,98,共8页
在各种高危行业,人员在施工中佩戴安全帽是很好的安全保护措施之一。为解决检测模型参数大无法在移动端和嵌入式设备部署等问题,提出YOLOv5-MN检测算法用于安全帽佩戴检测。首先,将GhostNet的轻量级模块Ghost引入YOLOv5的主干网络中进... 在各种高危行业,人员在施工中佩戴安全帽是很好的安全保护措施之一。为解决检测模型参数大无法在移动端和嵌入式设备部署等问题,提出YOLOv5-MN检测算法用于安全帽佩戴检测。首先,将GhostNet的轻量级模块Ghost引入YOLOv5的主干网络中进行优化,通过将输入特征图分为两个部分,分别进行不同程度的卷积操作,以减少计算复杂度。其次,采用新的特征融合网络结构BiFPN,将不同层级的特征图进行融合,以获取更丰富的语义信息。最后,增加ECA注意力机制,通过在特征图上引入通道注意力模块,动态地调整通道之间的重要程度,以提升模型的感知能力。实验结果表明,轻量化后的YOLOv5模型复杂度显著减小,推理速度大幅提高。 展开更多
关键词 安全帽佩戴检测 改进yolov5s 注意力机制 深度学习 目标检测
下载PDF
基于改进YOLO V5S网络的视频图像桥梁施工部件检测方法
19
作者 李战江 杨军强 +2 位作者 姜智国 左丽 朱军 《交通世界》 2024年第18期145-147,共3页
利用视频图像进行桥梁施工部件自动检测对提高施工过程管理效率具有重要意义,但施工现场环境复杂,导致检测效率较低。针对上述问题,提出了一种改进YOLOV5S网络的视频图像桥梁施工部件检测方法。首先提出了知识引导的桥梁施工部件数据集... 利用视频图像进行桥梁施工部件自动检测对提高施工过程管理效率具有重要意义,但施工现场环境复杂,导致检测效率较低。针对上述问题,提出了一种改进YOLOV5S网络的视频图像桥梁施工部件检测方法。首先提出了知识引导的桥梁施工部件数据集构建方法,用于确定多时段数据采集对象;其次,引入了注意力机制SimAM和轻量化模块,融合桥梁部件特征和降低模型参数量,并结合桥梁形态约束对预测框进行优化;最后,建立了桥梁施工部件检测数据集,并与其他经典模型进行对比实验。实验结果显示,该方法的mAP@0.5达到92.46,相对于现有优秀网络模型提高了1.07%~47.13%。同时,模型参数数量比YOLOV5S降低了13.02%,在保证较高检测精度的同时提高了效率。 展开更多
关键词 桥梁施工部件检测 改进yolov5s 知识引导 轻量化网络
下载PDF
基于改进Yolov5s的光刻热点检测算法
20
作者 吴清岳 刘佳敏 +2 位作者 张松 江浩 刘世元 《激光与光电子学进展》 CSCD 北大核心 2023年第24期243-251,共9页
光刻热点检测是实现集成电路可制造性设计,保障集成电路芯片最终良率的关键。鉴于传统基于深度学习的光刻热点检测方法难以满足先进集成电路制造对检测精度的要求,提出了一种基于改进Yolov5s的检测算法,用于光刻版图热点缺陷的精确检测... 光刻热点检测是实现集成电路可制造性设计,保障集成电路芯片最终良率的关键。鉴于传统基于深度学习的光刻热点检测方法难以满足先进集成电路制造对检测精度的要求,提出了一种基于改进Yolov5s的检测算法,用于光刻版图热点缺陷的精确检测。通过将坐标注意力机制引入骨干网络,提高了Yolov5s模型对版图图形区域的关注度,进而极大地改善了基于Yolov5s的检测算法的光刻热点检测性能。与此同时,采用Sigmoid线性单元激活函数进一步完善整个神经网络的非线性表达,利用Scylla交并比损失函数更快速地定量评估边界框回归损失,提高了热点检测算法的收敛速度和精度。将ICCAD(The International Conference on Computer-Aided Design)2012竞赛基准、经光学邻近校正优化后的光刻图形作为数据集对所提算法开展性能测试实验,验证了热点检测算法的优异检测精度。实验结果表明,该算法的平均准确率、平均召回率、平均F1-score和均值平均精度分别达到97.7%、98.0%、97.8%和98.4%,显著优于其他光刻热点检测算法,展示了良好的应用前景。 展开更多
关键词 光刻热点检测 改进yolov5s 检测精度 坐标注意力机制 sigmoid线性单元激活函数 scylla交并比损失函数
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部