为了解决寻常型银屑病在样本分布不平衡的数据中可能会导致的深度学习模型诊断效果下降等问题,通过结合改进模糊KMeans聚类算法对高聚类复杂度数据的处理能力以及Visual Geometry Group 13(VGG13)深度卷积神经网络模型的预测能力,提出...为了解决寻常型银屑病在样本分布不平衡的数据中可能会导致的深度学习模型诊断效果下降等问题,通过结合改进模糊KMeans聚类算法对高聚类复杂度数据的处理能力以及Visual Geometry Group 13(VGG13)深度卷积神经网络模型的预测能力,提出一种基于改进模糊KMeans聚类算法的VGG13深度卷积神经网络(VGG13-KMeans)模型,并将其应用于寻常型银屑病的诊断任务中。实验结果表明,相较于VGG13以及ResNet18两种方法,本文方法更适用于对银屑病特征的识别。展开更多
为提高浮动车数据中异常数据检测能力及不同载客状态下的模型检测分析能力,提出基于S-DTA-IIForest(Summation&Difference Third Order Average&Improvement-Isolation Forest)的浮动车数据异常检测算法。构建由相邻两项求和(S...为提高浮动车数据中异常数据检测能力及不同载客状态下的模型检测分析能力,提出基于S-DTA-IIForest(Summation&Difference Third Order Average&Improvement-Isolation Forest)的浮动车数据异常检测算法。构建由相邻两项求和(S)、三阶求和平均差分(DTA)的二维度空间SDTA特征向量;提出差额累计更新和动态区分辨识的改进孤立森林IIForest算法,通过设置停止阈值参数,避免当出现新样本异常值分数大于停止阈值时,仅更新样本不更新孤立森林模型的问题,设计每个二叉树区分辨识度参数,区分辨识度位于停止区间时停止二叉树生长,提高算法收敛性能,以ROC(Receiver Operating Characteristic)曲线下面积AUC(Area Under ROC Cure)、F1-score为指标对模型精度进行对比分析,并以重庆市中心城区学府大道开展实例验证。结果表明:本文S-DTA-IIForest组合算法AUC、F1-score分别为86.63%、0.89,AUC较传统孤立森林IForest(Isolation Forest)提高32.4%,运行效率提高1.29%,具有收敛速度更快、精度更高的优势,载客条件下模型AUC、F1-score较未载客分别提高7.7%、10.8%,组合算法对载客数据有更高的检测精度,且未载客状态数据异常率较载客状态增加71.4%,未载客数据异常率更高。展开更多
文摘为了解决寻常型银屑病在样本分布不平衡的数据中可能会导致的深度学习模型诊断效果下降等问题,通过结合改进模糊KMeans聚类算法对高聚类复杂度数据的处理能力以及Visual Geometry Group 13(VGG13)深度卷积神经网络模型的预测能力,提出一种基于改进模糊KMeans聚类算法的VGG13深度卷积神经网络(VGG13-KMeans)模型,并将其应用于寻常型银屑病的诊断任务中。实验结果表明,相较于VGG13以及ResNet18两种方法,本文方法更适用于对银屑病特征的识别。
文摘为提高浮动车数据中异常数据检测能力及不同载客状态下的模型检测分析能力,提出基于S-DTA-IIForest(Summation&Difference Third Order Average&Improvement-Isolation Forest)的浮动车数据异常检测算法。构建由相邻两项求和(S)、三阶求和平均差分(DTA)的二维度空间SDTA特征向量;提出差额累计更新和动态区分辨识的改进孤立森林IIForest算法,通过设置停止阈值参数,避免当出现新样本异常值分数大于停止阈值时,仅更新样本不更新孤立森林模型的问题,设计每个二叉树区分辨识度参数,区分辨识度位于停止区间时停止二叉树生长,提高算法收敛性能,以ROC(Receiver Operating Characteristic)曲线下面积AUC(Area Under ROC Cure)、F1-score为指标对模型精度进行对比分析,并以重庆市中心城区学府大道开展实例验证。结果表明:本文S-DTA-IIForest组合算法AUC、F1-score分别为86.63%、0.89,AUC较传统孤立森林IForest(Isolation Forest)提高32.4%,运行效率提高1.29%,具有收敛速度更快、精度更高的优势,载客条件下模型AUC、F1-score较未载客分别提高7.7%、10.8%,组合算法对载客数据有更高的检测精度,且未载客状态数据异常率较载客状态增加71.4%,未载客数据异常率更高。