应用层DoS(Denial of Service)攻击是当前对互联网应用的一个重要的危害。描述了这种应用层攻击形式;研究分析了这种攻击的特征,即流量特征、负载特征和行为特征;回顾了针对这种攻击的特征检测方法,并比较了它们各自的优缺点。最后,对...应用层DoS(Denial of Service)攻击是当前对互联网应用的一个重要的危害。描述了这种应用层攻击形式;研究分析了这种攻击的特征,即流量特征、负载特征和行为特征;回顾了针对这种攻击的特征检测方法,并比较了它们各自的优缺点。最后,对应用层DoS攻击检测防御的发展趋势提出了一些看法。展开更多
为进一步提升应用层DDoS攻击检测准确率,提出一种将流量与用户行为特征相结合且模型参数可高效更新的应用层DDoS攻击检测模型.为统一处理流量与用户行为特征的异源数据,利用多模态深度(Multimodal Deep Learning,MDL)神经网络从数据流...为进一步提升应用层DDoS攻击检测准确率,提出一种将流量与用户行为特征相结合且模型参数可高效更新的应用层DDoS攻击检测模型.为统一处理流量与用户行为特征的异源数据,利用多模态深度(Multimodal Deep Learning,MDL)神经网络从数据流量与网页日志中提取流量与用户行为深层特征后输入汇聚深度神经网络进行检测.为减少MDL神经网络参数更新时的灾难性遗忘现象,在模型参数更新过程中基于弹性权重保持(Elastic Weight Consolidation,EWC)算法为重要模型参数增加惩罚项,保持对初始训练数据集检测准确率的同时,提升对新数据集的检测性能.最后,基于K-Means算法获得模型初始训练数据集聚类,并筛选出新数据集中聚类外数据进行模型参数更新,防止EWC算法因数据相关性过高而失效.实验表明,所提应用层DDoS检测模型检测准确率可达98.2%,且相对MLP_Whole方法模型参数更新性能较好.展开更多
针对当前应用层分布式拒绝服务攻击(App-DDoS)检测方法高度依赖于系统日志,且检测攻击类型单一的问题,提出了基于卡尔曼滤波和信息熵的联合检测模型DFM-FA(detection and filtering model against App-DDoSattacks based on flow analys...针对当前应用层分布式拒绝服务攻击(App-DDoS)检测方法高度依赖于系统日志,且检测攻击类型单一的问题,提出了基于卡尔曼滤波和信息熵的联合检测模型DFM-FA(detection and filtering model against App-DDoSattacks based on flow analysis),将应用层的行为异常检测映射为网络层的流量异常检测,最大限度地保证了合法用户的优先正常访问。实验证明,DFM-FA既不依赖于系统日志,同时又能检测到FTP、DNS等多种App-DDoS攻击。展开更多
文摘为进一步提升应用层DDoS攻击检测准确率,提出一种将流量与用户行为特征相结合且模型参数可高效更新的应用层DDoS攻击检测模型.为统一处理流量与用户行为特征的异源数据,利用多模态深度(Multimodal Deep Learning,MDL)神经网络从数据流量与网页日志中提取流量与用户行为深层特征后输入汇聚深度神经网络进行检测.为减少MDL神经网络参数更新时的灾难性遗忘现象,在模型参数更新过程中基于弹性权重保持(Elastic Weight Consolidation,EWC)算法为重要模型参数增加惩罚项,保持对初始训练数据集检测准确率的同时,提升对新数据集的检测性能.最后,基于K-Means算法获得模型初始训练数据集聚类,并筛选出新数据集中聚类外数据进行模型参数更新,防止EWC算法因数据相关性过高而失效.实验表明,所提应用层DDoS检测模型检测准确率可达98.2%,且相对MLP_Whole方法模型参数更新性能较好.
文摘针对当前应用层分布式拒绝服务攻击(App-DDoS)检测方法高度依赖于系统日志,且检测攻击类型单一的问题,提出了基于卡尔曼滤波和信息熵的联合检测模型DFM-FA(detection and filtering model against App-DDoSattacks based on flow analysis),将应用层的行为异常检测映射为网络层的流量异常检测,最大限度地保证了合法用户的优先正常访问。实验证明,DFM-FA既不依赖于系统日志,同时又能检测到FTP、DNS等多种App-DDoS攻击。