With rapid advances of solar blind ultraviolet LED and ultraviolet detecting technology in recent years, ultraviolet communication gradually becomes a research hotspot due to its inherent advantages: low solar backgro...With rapid advances of solar blind ultraviolet LED and ultraviolet detecting technology in recent years, ultraviolet communication gradually becomes a research hotspot due to its inherent advantages: low solar background noise, non-line-of-sight(NLOS) and good secrecy. The strong scattering characteristics in atmospheric render ultraviolet waveband the ideal choice for achieving NLOS optical communication. This paper reviews the research history and status of ultraviolet communication both in China and abroad, and especially introduces three main issues of ultraviolet communication: channel model, system analysis and design, light sources and detectors. For each aspect, current open issues and prospective research directions are analyzed.展开更多
The structure,equivalent circuit,noise sources of silicon photodiode are analyzed.In order to improve the measuring linearity,we must choose the silicon photodiode with a large R d,small R s and I 0 and...The structure,equivalent circuit,noise sources of silicon photodiode are analyzed.In order to improve the measuring linearity,we must choose the silicon photodiode with a large R d,small R s and I 0 and under an operation state of output short-circuit.We must let the operation amplifier work in the current-voltage transfer form.Also we analyzed the effects of the input noise voltage,the input noise current,the input offset voltage,the input offset current of the operation amplifier and the noises of the silicon photodiode on the combined circuit of the operation amplifier with the silicon photodiode.Considering these factors,we can design the detective circuit with high response,sensitivity,stability,linearity and SNR .展开更多
The aggregation-induced emission(AIE) phenomenon provides a new direction for the development of organic light-emitting devices. Here, we present a new class of emitters based on 4,4-difluoro-4-bora-3 a,4 a-diaza-s-in...The aggregation-induced emission(AIE) phenomenon provides a new direction for the development of organic light-emitting devices. Here, we present a new class of emitters based on 4,4-difluoro-4-bora-3 a,4 a-diaza-s-indacene(BODIPY), functionalized at different positions with tetraphenylethylene(TPE), which is one of the most famous AIE luminogens. Thanks to this modification, we were able to tune the photoluminescence of the BODIPY moiety from the green to the near-infrared(NIR)spectral range and achieve PL efficiencies of ~50% in the solid state. Remarkably, we observed an enhancement of the AIE and up to ~100% photoluminescence efficiencies by blending the TPE-substituted BODIPY fluorophores with a poly[(9,9-di-noctylfluorene-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4,7-diyl)](F8 BT) matrix. By incorporating these blends in organic lightemitting diodes(OLEDs), we obtained electroluminescence peaked in the range 650–700 nm with up to 1.8% external quantum efficiency and ~2 m W/cm2 radiance, a remarkable result for red/NIR emitting and solution-processed OLEDs.展开更多
Tetraphenylethene (TPE) is a popular luminogen characterized by aggregation-induced emission and has been widely used to construct solid-state emissive materials. In this work, two thermally stable polymers (P1 and P2...Tetraphenylethene (TPE) is a popular luminogen characterized by aggregation-induced emission and has been widely used to construct solid-state emissive materials. In this work, two thermally stable polymers (P1 and P2) consisting of TPE conjugated to the 2,7-positions of fluorene and carbazole, respectively, are synthesized and characterized. Both polymers are weakly fluorescent in solutions but show greatly enhanced emission as the aggregate formation, presenting an aggregation-enhanced emission feature. Two kinds of polymer light-emitting diodes are fabricated utilizing P1 and P2 as emitters (EML) (device I: ITO/PEDOT:PSS (45 nm)/PVK:EML (1:1 wt%, 55 nm)/TPBI (38 nm)/Ca:Ag; device II: ITO/PEDOT:PSS (45 nm)/ PVK:OXD-7:EML (3:1:3 wt%, 55 nm)/TPBI (38 nm)/Ca:Ag). The device II of P2 shows the best performances, affording a maximum luminance of 6500 cd/m 2 and a high peak efficiency of 2.11 cd/A.展开更多
Editor's comments Formaldehyde (HCHO) emitted from chemical manufacturing plants including methanol-gasoline/diesel fuel vehicles and the construction and decoration materials is one of the major air pollutions, wh...Editor's comments Formaldehyde (HCHO) emitted from chemical manufacturing plants including methanol-gasoline/diesel fuel vehicles and the construction and decoration materials is one of the major air pollutions, which induces photochemical pollution and hazards human health. Great efforts have been made for the reduction or control of the emission of HCHO to satisfy the stringent environmental regulations. Now, a new study supported by the National Natural Science Foundation of China reports mesoporous manganese oxide with novel nanostructures for the decomposition of HCHO. The obtained manganese oxide nanomaterials showed high catalytic activities for oxidative decomposition of HCHO at low temperatures. Complete conversion of HCHO to CO2 and H2O were achieved, and no harmful by- products were detected in effluent gases. The catalytic activities of these nanomaterials are significantly higher than those of previously reported manganese oxide octahedral molecular sieve (OMS-2) nanorods , MnO x powders, and alumnina-supported mangnaese-palladium oxide catalysts. These results provide a new route for the removal of HCHO and other air pollutions.展开更多
基金supported by the National High-tech R&D Program of China grant 2015AA043302the Basic research project of Shenzhen grant JCYJ20140417115840236
文摘With rapid advances of solar blind ultraviolet LED and ultraviolet detecting technology in recent years, ultraviolet communication gradually becomes a research hotspot due to its inherent advantages: low solar background noise, non-line-of-sight(NLOS) and good secrecy. The strong scattering characteristics in atmospheric render ultraviolet waveband the ideal choice for achieving NLOS optical communication. This paper reviews the research history and status of ultraviolet communication both in China and abroad, and especially introduces three main issues of ultraviolet communication: channel model, system analysis and design, light sources and detectors. For each aspect, current open issues and prospective research directions are analyzed.
文摘The structure,equivalent circuit,noise sources of silicon photodiode are analyzed.In order to improve the measuring linearity,we must choose the silicon photodiode with a large R d,small R s and I 0 and under an operation state of output short-circuit.We must let the operation amplifier work in the current-voltage transfer form.Also we analyzed the effects of the input noise voltage,the input noise current,the input offset voltage,the input offset current of the operation amplifier and the noises of the silicon photodiode on the combined circuit of the operation amplifier with the silicon photodiode.Considering these factors,we can design the detective circuit with high response,sensitivity,stability,linearity and SNR .
基金supported by the European Community’s Seventh Framework Programme (FP7/2007-2013) (607585)
文摘The aggregation-induced emission(AIE) phenomenon provides a new direction for the development of organic light-emitting devices. Here, we present a new class of emitters based on 4,4-difluoro-4-bora-3 a,4 a-diaza-s-indacene(BODIPY), functionalized at different positions with tetraphenylethylene(TPE), which is one of the most famous AIE luminogens. Thanks to this modification, we were able to tune the photoluminescence of the BODIPY moiety from the green to the near-infrared(NIR)spectral range and achieve PL efficiencies of ~50% in the solid state. Remarkably, we observed an enhancement of the AIE and up to ~100% photoluminescence efficiencies by blending the TPE-substituted BODIPY fluorophores with a poly[(9,9-di-noctylfluorene-2,7-diyl)-alt-(benzo[2,1,3]thiadiazol-4,7-diyl)](F8 BT) matrix. By incorporating these blends in organic lightemitting diodes(OLEDs), we obtained electroluminescence peaked in the range 650–700 nm with up to 1.8% external quantum efficiency and ~2 m W/cm2 radiance, a remarkable result for red/NIR emitting and solution-processed OLEDs.
基金the National Natural Science Foundation of China (51273053, 21104012, 21284034 and 61106017)the Natural Science Foundation of Zhejiang Province (Y4110331)+1 种基金the Program for Changjiang Scholars and Innovative Research Teams in Chinese Universities (IRT 1231)the Project of Zhejiang Key Scientific and Technological Innovation Team (2010R50017)
文摘Tetraphenylethene (TPE) is a popular luminogen characterized by aggregation-induced emission and has been widely used to construct solid-state emissive materials. In this work, two thermally stable polymers (P1 and P2) consisting of TPE conjugated to the 2,7-positions of fluorene and carbazole, respectively, are synthesized and characterized. Both polymers are weakly fluorescent in solutions but show greatly enhanced emission as the aggregate formation, presenting an aggregation-enhanced emission feature. Two kinds of polymer light-emitting diodes are fabricated utilizing P1 and P2 as emitters (EML) (device I: ITO/PEDOT:PSS (45 nm)/PVK:EML (1:1 wt%, 55 nm)/TPBI (38 nm)/Ca:Ag; device II: ITO/PEDOT:PSS (45 nm)/ PVK:OXD-7:EML (3:1:3 wt%, 55 nm)/TPBI (38 nm)/Ca:Ag). The device II of P2 shows the best performances, affording a maximum luminance of 6500 cd/m 2 and a high peak efficiency of 2.11 cd/A.
文摘Editor's comments Formaldehyde (HCHO) emitted from chemical manufacturing plants including methanol-gasoline/diesel fuel vehicles and the construction and decoration materials is one of the major air pollutions, which induces photochemical pollution and hazards human health. Great efforts have been made for the reduction or control of the emission of HCHO to satisfy the stringent environmental regulations. Now, a new study supported by the National Natural Science Foundation of China reports mesoporous manganese oxide with novel nanostructures for the decomposition of HCHO. The obtained manganese oxide nanomaterials showed high catalytic activities for oxidative decomposition of HCHO at low temperatures. Complete conversion of HCHO to CO2 and H2O were achieved, and no harmful by- products were detected in effluent gases. The catalytic activities of these nanomaterials are significantly higher than those of previously reported manganese oxide octahedral molecular sieve (OMS-2) nanorods , MnO x powders, and alumnina-supported mangnaese-palladium oxide catalysts. These results provide a new route for the removal of HCHO and other air pollutions.