This paper analyzes spatial grey self-similar solitary waves propagation and collision in graded-index nonlinear waveguide amplifiers with self-focusing and self-defocusing Kerr nonlinearities. New exact self-similar ...This paper analyzes spatial grey self-similar solitary waves propagation and collision in graded-index nonlinear waveguide amplifiers with self-focusing and self-defocusing Kerr nonlinearities. New exact self-similar solutions are found using a novel transformation and their main features are investigated by using direct computer simulations.展开更多
We describe an all-optical wavelength conversion scheme for 1310 nm to 1550 nm based on nonlinear polarization rotation in a gain-transparent semiconductor optical amplifier (GT-SOA) which brings in the assistant li...We describe an all-optical wavelength conversion scheme for 1310 nm to 1550 nm based on nonlinear polarization rotation in a gain-transparent semiconductor optical amplifier (GT-SOA) which brings in the assistant light to improve the property of the converted light. From the SOA carder density equations, the 1310 nm-to-1550 nm wavelength conversion scheme is analyzed by the Jones matrix. The phase shift between TE and TM modes and the converted light are simulated at bit rate of 30 Gbit/s. We also analyze the influence of the input signal power, the injected current and the assistant light power on the extinction ratio of the converted li~,ht.展开更多
基金supported by National Natural Science Foundation of China under Grant No.0575087the Natural Science Foundation of Zhejiang Province under Grant No.Y605056
文摘This paper analyzes spatial grey self-similar solitary waves propagation and collision in graded-index nonlinear waveguide amplifiers with self-focusing and self-defocusing Kerr nonlinearities. New exact self-similar solutions are found using a novel transformation and their main features are investigated by using direct computer simulations.
基金supported by the National Natural Science Foundation of China(No.61077014)
文摘We describe an all-optical wavelength conversion scheme for 1310 nm to 1550 nm based on nonlinear polarization rotation in a gain-transparent semiconductor optical amplifier (GT-SOA) which brings in the assistant light to improve the property of the converted light. From the SOA carder density equations, the 1310 nm-to-1550 nm wavelength conversion scheme is analyzed by the Jones matrix. The phase shift between TE and TM modes and the converted light are simulated at bit rate of 30 Gbit/s. We also analyze the influence of the input signal power, the injected current and the assistant light power on the extinction ratio of the converted li~,ht.