期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于t-SNE降维和放射传播聚类算法的低压配电网相位识别 被引量:3
1
作者 柳守诚 王淳 +4 位作者 邹智辉 陈佳慧 周晗 刘伟 张旭 《中国电力》 CSCD 北大核心 2023年第5期108-117,共10页
智能电表的广泛普及和高级测量体系(advancedmeteringinfrastructure,AMI)的建立为分析配电网运行情况提供了大量监测信息与测量数据,而台区用户的相位信息变动又为准确掌握台区运行情况带来难题。针对台区用户的相位识别问题,提出了一... 智能电表的广泛普及和高级测量体系(advancedmeteringinfrastructure,AMI)的建立为分析配电网运行情况提供了大量监测信息与测量数据,而台区用户的相位信息变动又为准确掌握台区运行情况带来难题。针对台区用户的相位识别问题,提出了一种基于用户电压数据的t分布随机邻接嵌入(t-distributed stochastic neighbor embedding,t-SNE)特征提取及放射传播(affinity propagation,AP)聚类算法的相位识别方法。先对提取出的用户电压数据进行Z-score数据标准化处理,由t-SNE降维提取出数据特征,再采用放射传播聚类算法对用户进行相位识别。选取某市2个小区进行算例分析,采用评价指标比较了不同识别方法的识别效果,并分析了数据采集频率和计量误差对识别效果的影响。实际台区算例分析验证了所提方法的准确性,说明所提方法能够有效解决台区用户相位识别问题。 展开更多
关键词 低压台区 相位识别 机器学习 t分布随机邻接嵌入 放射传播聚类算法
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部