A cellular survival model and the cross section calculation with low and high LET for ion irradiation were presented. Based on our formula of surviving fraction calculation, the survival data of Chinese hamster cell (...A cellular survival model and the cross section calculation with low and high LET for ion irradiation were presented. Based on our formula of surviving fraction calculation, the survival data of Chinese hamster cell (V-79 ) for ion irradiation including He, Li, B, C, O, Ne and Ar were calculated; the cross sections for ion irradiation includ- ing He, Ni, C, Ar, Kr, Xe and U were shown. The calculated results show that the presented model is a good descrip- tion of radiation effects of V-79 cell for different ion irradiation. In this model splitting energy between ion-kill mode and gamma-kill model is avoided, the calculated results of cross section needn’t be multiplied by a factor to fit the experimental data.展开更多
Whether due to therapeutic or belligerent exposure, the gastrointestinal effects of irradiation produce symptoms dreaded by a majority of the population. Nausea, vomiting, diarrhea and abdominal cramping are hallmarks...Whether due to therapeutic or belligerent exposure, the gastrointestinal effects of irradiation produce symptoms dreaded by a majority of the population. Nausea, vomiting, diarrhea and abdominal cramping are hallmarks of the prodromal phase of radiation sickness, occurring hours to days following radiation exposure. The prodromal phase is distinct from acute radiation sickness in that the absorptive, secretory and anatomic changes associated with radiation damage are not easily identifi able. It is during this phase of radiation sickness that gastrointestinal motility significantly changes. In addition, there is evidence that motor activity of the gut contributes to some of the acute and chronic effects of radiation.展开更多
The α-preformation probability is directly deduced from experimental α decay energies and half-lives in an analytical way without any modified parameters. Several other model-deduced results, are used to compare wit...The α-preformation probability is directly deduced from experimental α decay energies and half-lives in an analytical way without any modified parameters. Several other model-deduced results, are used to compare with that of the present study. The key role played by the shell effects in the v-preformation process is indicated in all these cases. In detail, the α-preformation factors of different theoretical extractions are found to have similar behavior for one given isotopic chain, implying the model-independent varying trend of the preformation probability of α particle. In addition, the formation probability of heavier particle in cluster radioactivity is also obtained, and this confirms the relationship between the cluster preformation factor and the product of the cluster and daughter proton numbers.展开更多
基金Supported by Natural Science Foundation of Guangdong Province(No. 031563)
文摘A cellular survival model and the cross section calculation with low and high LET for ion irradiation were presented. Based on our formula of surviving fraction calculation, the survival data of Chinese hamster cell (V-79 ) for ion irradiation including He, Li, B, C, O, Ne and Ar were calculated; the cross sections for ion irradiation includ- ing He, Ni, C, Ar, Kr, Xe and U were shown. The calculated results show that the presented model is a good descrip- tion of radiation effects of V-79 cell for different ion irradiation. In this model splitting energy between ion-kill mode and gamma-kill model is avoided, the calculated results of cross section needn’t be multiplied by a factor to fit the experimental data.
基金Supported by a cooperative agreement with NIAID, AI067734
文摘Whether due to therapeutic or belligerent exposure, the gastrointestinal effects of irradiation produce symptoms dreaded by a majority of the population. Nausea, vomiting, diarrhea and abdominal cramping are hallmarks of the prodromal phase of radiation sickness, occurring hours to days following radiation exposure. The prodromal phase is distinct from acute radiation sickness in that the absorptive, secretory and anatomic changes associated with radiation damage are not easily identifi able. It is during this phase of radiation sickness that gastrointestinal motility significantly changes. In addition, there is evidence that motor activity of the gut contributes to some of the acute and chronic effects of radiation.
基金the National Natural Science Foundation of China (Grant Nos. 11035001, 10975072, 10735010 and 11120101005)the National Major State Basic Research and Development of China (Grant Nos. 2010CB327803 and 2013CB834400)+4 种基金the Knowledge Innovative Program of the Chinese Academy of Sciences (Grant No. KJCX2-SW-N02)the Research Fund of Doctoral Point (RFDP) (Grant No. 20100091110028)the Project Funded by the Priority Academic Programme Development of Jiangsu Higher Education Institutions (PAPD)the Research and Innovation for College Postgraduate of JiangSu Province (Grant No. CXZZ12 0031)the Science and Technology Development Fund of Macao (Grant No.068/2011/A)
文摘The α-preformation probability is directly deduced from experimental α decay energies and half-lives in an analytical way without any modified parameters. Several other model-deduced results, are used to compare with that of the present study. The key role played by the shell effects in the v-preformation process is indicated in all these cases. In detail, the α-preformation factors of different theoretical extractions are found to have similar behavior for one given isotopic chain, implying the model-independent varying trend of the preformation probability of α particle. In addition, the formation probability of heavier particle in cluster radioactivity is also obtained, and this confirms the relationship between the cluster preformation factor and the product of the cluster and daughter proton numbers.