Aluminum matrix composites(AMCs), reinforced with novel pre-synthesized Al/Cu Fe multi-layered coreshell particles, were fabricated by different consolidation techniques to investigate their effect on microstructure a...Aluminum matrix composites(AMCs), reinforced with novel pre-synthesized Al/Cu Fe multi-layered coreshell particles, were fabricated by different consolidation techniques to investigate their effect on microstructure and mechanical properties. To synthesize multi-layered Al/Cu Fe core-shell particles, Cu and Fe layers were deposited on Al powder particles by galvanic replacement and electroless plating method, respectively. The core-shell powder and sintered compacts were characterized by using X-ray diffraction(XRD), scanning electron microscopy(SEM) equipped with energy dispersive spectroscopy(EDX), pycnometer, microhardness and compression tests. The results revealed that a higher extent of interfacial reactions, due to the transformation of the deposited layer into intermetallic phases in spark plasma sintered composite, resulted in high relative density(99.26%), microhardness(165 HV0.3) and strength(572 MPa). Further, the presence of un-transformed Cu in the shell structure of hot-pressed composite resulted in the highest fracture strain(20.4%). The obtained results provide stronger implications for tailoring the microstructure of AMCs through selecting appropriate sintering paths to control mechanical properties.展开更多
文摘Aluminum matrix composites(AMCs), reinforced with novel pre-synthesized Al/Cu Fe multi-layered coreshell particles, were fabricated by different consolidation techniques to investigate their effect on microstructure and mechanical properties. To synthesize multi-layered Al/Cu Fe core-shell particles, Cu and Fe layers were deposited on Al powder particles by galvanic replacement and electroless plating method, respectively. The core-shell powder and sintered compacts were characterized by using X-ray diffraction(XRD), scanning electron microscopy(SEM) equipped with energy dispersive spectroscopy(EDX), pycnometer, microhardness and compression tests. The results revealed that a higher extent of interfacial reactions, due to the transformation of the deposited layer into intermetallic phases in spark plasma sintered composite, resulted in high relative density(99.26%), microhardness(165 HV0.3) and strength(572 MPa). Further, the presence of un-transformed Cu in the shell structure of hot-pressed composite resulted in the highest fracture strain(20.4%). The obtained results provide stronger implications for tailoring the microstructure of AMCs through selecting appropriate sintering paths to control mechanical properties.