期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
液态炸药放料安全控制技术
1
作者 高晓非 张偲严 +2 位作者 孟凡军 冯小氟 郭洪斌 《新技术新工艺》 2012年第5期94-96,共3页
针对液态炸药生产过程中自动化放料装置存在的不足及其安全隐患,设计了液态炸药自动化安全放料装置,消除了液态炸药放料过程中的不安全因素。结构设计中,充分考虑了各种因素对炸药安全生产的影响。结果表明,液态炸药自动化放料装置,能... 针对液态炸药生产过程中自动化放料装置存在的不足及其安全隐患,设计了液态炸药自动化安全放料装置,消除了液态炸药放料过程中的不安全因素。结构设计中,充分考虑了各种因素对炸药安全生产的影响。结果表明,液态炸药自动化放料装置,能够满足混合炸药及弹体注药的自动化生产要求,在其安全及放料功能上具有优越性。 展开更多
关键词 液态炸药 安全 放料结构
下载PDF
Effects of Na content on structure and electrochemical performances of Na_xMnO_(2+δ) cathode material 被引量:2
2
作者 杨顺毅 王先友 +3 位作者 王莹 陈权启 李姣姣 杨秀康 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第10期1892-1898,共7页
Sodium manganese oxides,NaxMnO2+δ(x = 0.4,0.5,0.6,0.7,1.0;δ = 0-0.3),were synthesized by solid-state reaction routine combined with sol-gel process.The structure,morphology and electrochemical performances of as-pre... Sodium manganese oxides,NaxMnO2+δ(x = 0.4,0.5,0.6,0.7,1.0;δ = 0-0.3),were synthesized by solid-state reaction routine combined with sol-gel process.The structure,morphology and electrochemical performances of as-prepared samples were characterized by XRD,SEM,CV,EIS and galvanostatic charge/discharge experiments.It is found that Na0.6MnO2+δ and Na0.7MnO2+δ have high discharge capacity and good cycle performance.At a current density of 25 mA/g at the cutoff voltage of 2.0-4.3 V,Na0.6MnO2+δ gives the second discharge capacity of 188 mA·h/g and remains 77.9% of second discharge capacity after 40 cycles.Na0.7MnO2+δ exhibits the second discharge capacity of 176 mA·h/g and shows better cyclic stability;the capacity retention after 40 cycles is close to 85.5%.Even when the current density increases to 250 mA/g,the discharge capacity of Na0.7MnO2+δ still approaches to 107 mA·h/g after 40 cycles. 展开更多
关键词 lithium-ion battery cathode material sodium manganese oxides electrochemical properties sol-gel technology
下载PDF
Synthesis and electrochemical performance of Li_2Mg_(0.15)Mn_(0.4)Co_(0.45)SiO_4/C cathode material for lithium ion batteries
3
作者 胡传跃 郭军 +2 位作者 李四军 彭秧锡 文瑾 《Journal of Central South University》 SCIE EI CAS 2012年第7期1791-1795,共5页
The synthesis, structure and performance of Li2Mg0.15Mn0.4Co0.45SiO4/C cathode material were studied. The Li2Mg0.15Mn0.4Co0.45SiO4/C solid solution with orthorhombic unit cell (space group Pmn21) was synthesized suc... The synthesis, structure and performance of Li2Mg0.15Mn0.4Co0.45SiO4/C cathode material were studied. The Li2Mg0.15Mn0.4Co0.45SiO4/C solid solution with orthorhombic unit cell (space group Pmn21) was synthesized successfully by combination of wet process and solid-state reaction at high temperature, and its electrochemical performance was investigated primarily. Li2Mg0.15Mn0.4Co0.45SiO4/C composite materials deliver a charge capacity of 302 mA-h/g and a discharge capacity of 171 mA.h/g in the first cycle. The discharge capacity is stabilized at about 100 mA-h/g after 10 cycles at a current density of 10 mA/g in the voltage of 1.5-4.8 V vs Li/Li^+. The results show that Mg-substitution for the Co ions in Li2Mn0.4Co0.6SiO4 improves the stabilization of initial structure and the electrochemical nerformance. 展开更多
关键词 lithium ion battery Li2Mg0.15Mn0.4Co0.45Si04/C cathode material SYNTHESIS
下载PDF
Boosting the potassium-ion storage performance enabled by engineering of hierarchical MoSSe nanosheets modified with carbon on porous carbon sphere 被引量:10
4
作者 Mengting Cai Hehe Zhang +11 位作者 Yinggan Zhang Bensheng Xiao Lei Wang Miao Li Ying Wu Baisheng Sa Honggang Liao Li Zhang Shuangqiang Chen Dong-Liang Peng Ming-Sheng Wang Qiaobao Zhang 《Science Bulletin》 SCIE EI CSCD 2022年第9期933-945,M0004,共14页
Developing suitable electrode materials capable of tolerating severe structural deformation and overcoming sluggish reaction kinetics resulting from the large radius of potassium ion(K+)insertion is critical for pract... Developing suitable electrode materials capable of tolerating severe structural deformation and overcoming sluggish reaction kinetics resulting from the large radius of potassium ion(K+)insertion is critical for practical applications of potassium-ion batteries(PIBs).Herein,a superior anode material featuring an intriguing hierarchical structure where assembled MoSSe nanosheets are tightly anchored on a highly porous micron-sized carbon sphere and encapsulated within a thin carbon layer(denoted as Cs@MoSSe@C)is reported,which can significantly boost the performance of PIBs.The assembled MoSSe nanosheets with expanded interlayer spacing and rich anion vacancy can facilitate the intercalation/deintercalation of K+and guarantee abundant active sites together with a low K+diffusion barrier.Meanwhile,the thin carbon protective layer and the highly porous carbon sphere matrix can alleviate the volume expansion and enhance the charge transport within the composite.Under these merits,the as-prepared Cs@MoSSe@C anode exhibits a high reversible capacity(431.8 mAh g^(-1) at 0.05 A g^(-1)),good rate capability(161 mAh g^(-1) at 5 A g^(-1)),and superior cyclic performance(70.5%capacity retention after 600 cycles at 1 A g^(-1)),outperforming most existing Mo-based S/Se anodes.The underlying mechanisms and origins of superior performance are elucidated by a set of correlated in-situ/ex-situ characterizations and theoretical calculations.Further,a PIB full cell based on Cs@MoSSe@C anode also exhibits an impressive electrochemical performance.This work provides some insights into developing high-performance PIBs anodes with transition-metal chalcogenides. 展开更多
关键词 Potassium-ion storage performance Electrode materials Potassium-ion batteries Transition-metal chalcogenides
原文传递
NiaSi2O5(OH)4 Multi-Walled Nanotubes with Tunable Magnetic Properties and Their Application as Anode Materials for Lithium Batteries 被引量:13
5
作者 Yan Yang Qingqin Liang +4 位作者 dinghong Li Yuan Zhuang Yunhua He Bo Bai Xun Wang 《Nano Research》 SCIE EI CAS CSCD 2011年第9期882-890,共9页
Highly crystalline and thermally stable pure multi-walled Ni3Si2O5(OH)4 nanotubes with a layered structure have been synthesized in water at a relatively low temperature of 200-210 ℃ using a facile and simple metho... Highly crystalline and thermally stable pure multi-walled Ni3Si2O5(OH)4 nanotubes with a layered structure have been synthesized in water at a relatively low temperature of 200-210 ℃ using a facile and simple method. The nickel ions between the layers could be reduced in situ to form size-tunable Ni nanocrystals, which endowed these nanotubes with tunable magnetic properties. Additionally, when used as the anode material in a lithium ion battery, the layered structure of the Ni3Si2O5(OH)4 nanotubes provided favorable transport kinetics for lithium ions and the discharge capacity reached 226.7 mA.h.g-1 after 21 cycles at a rate of 20 mA.g-1, Furthermore, after the nanotubes were calcined (600 ℃, 4 h) or reduced (180℃ 10 h), the corresponding discharge capacities increased to 277.2 mA.h.g-1 and 308.5 mA.h.g-1, respectively. 展开更多
关键词 Silicate nanotubes Ni nanocrystals lithium battery magnetic properties
原文传递
Constructing monodispersed MoSe_2 anchored on graphene:a superior nanomaterial for sodium storage 被引量:3
6
作者 刘正清 张怡 +2 位作者 赵洪洋 李娜 杜亚平 《Science China Materials》 SCIE EI CSCD 2017年第2期167-177,共11页
We reported a facile and robust one-pot wet chemistry strategy to achieve the growth of uniform three dimensional(3D) MoSe_2 ultrathin nanostructures on graphene nanosheets to form high quality MoSe_2/rGO hybrid nan... We reported a facile and robust one-pot wet chemistry strategy to achieve the growth of uniform three dimensional(3D) MoSe_2 ultrathin nanostructures on graphene nanosheets to form high quality MoSe_2/rGO hybrid nanostructures.Owing to the graphene as a support,it can significantly prevent the aggregation of MoSe_2 and the distribution of MoSe_2 on graphene was highly uniform.Importantly,due to the unique structures,the as-harvested MoSe_2/rGO hybrid exhibited excellent electrochemical performance as anode materials for sodium-ion battery(SIB).When evaluated in a half cell system,the MoSe_2/rGO hybrid nanostructures could deliver a capacity of 200.2 mA h g^(-1) at8 A g^(-1) and maintain a capacity of 230.1 mA h g^(-1) over 100 cycles at 5 A g^(-1).When coupled with Na_3V_2(PO_4)_3 cathode in a full cell system,the material could deliver a discharge capacity of 363.1 mA h g^(-1) at the current density of 0.5 A g^(-1).Moreover,a discharge capacity of 56.4 mA h g^(-1) could be achieved even at a high current density of 10 A g^(-1),which clearly suggested the high power capability of MoSe_2/rGO hybrid nanostructures for sodium ion energy storage. 展开更多
关键词 MoSe_2/rGO hybrid nanostructure sodium energy storage high rate long cycle
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部