The main aim of this paper is to investigate energy consumptions, CO2 emissions and costs during the production and life cycle of structural materials. The virgin and recycled metals as well as waste minerals such as ...The main aim of this paper is to investigate energy consumptions, CO2 emissions and costs during the production and life cycle of structural materials. The virgin and recycled metals as well as waste minerals such as fly ash, slag in concrete save energy consumption, CO2 emissions and costs. The importance and effectiveness of recycled materials will be statistically evaluated via energy consumption, carbon footprint, ultimate strength and their ratios. Embodied energy to ultimate strength or embodied carbon to ultimate strength ratios may emphasize the effectiveness of a sustainable material. The analyses in this study indicate the utilization of the recycled steel and C50 concrete with 50% fly ash or slag is the most efficient way of using sustainable materials.展开更多
The energy and environmental impacts resulting from the buildings sector are one of the impending problems which address the international action. The main strategies implemented to answer to this problem are the ener...The energy and environmental impacts resulting from the buildings sector are one of the impending problems which address the international action. The main strategies implemented to answer to this problem are the energy efficiency improvement, the CO2 emissions reduction and the renewable energy share increase in the energy mix. The key subject discussed in this paper is the "building energy impact", aimed to leading the building sector towards the energy efficiency improvement. The paper's aim is to show that an energy assessment is not able to give a consistent evaluation of building energy use, and it could be misleading. Therefore, the paper proposes the exergy assessment as complementary evaluation method, in order to achieve a complete description of the concept "building's energy impact on the environment". In the first section, we describe the parameters currently used for the building energy assessment, focusing on the primary energy index and the CO2 emissions index. In the second section, we introduce the exergy as a complementary index. This index is a possible answer to the problems previously identified. Finally, in the third section, we present three test-cases, analyzed through transient simulation software TRNSYS. The purpose of the test-cases analysis is to show the difference between energy and exergy assessment.展开更多
Oxygen rich combustion is a mean to increase the energy efficiency and to contribute to CO2 capture. Influence of oxygen enriched air on the stability of methane flames from non premixed laminar jets has been investig...Oxygen rich combustion is a mean to increase the energy efficiency and to contribute to CO2 capture. Influence of oxygen enriched air on the stability of methane flames from non premixed laminar jets has been investigated experimentally. The burner consists of two coaxial jets: methane flowing out of the inner, oxidizer from the outer. The flame behavior is studied according to the proportion of oxygen in the oxidizer jet, the oxidizer and the methane jets velocities. The flame is either anchored to the burner, lifted, stationary or not or blown-out. The addition of oxygen produces a decrease of the lift height, a reduction of the length of the reaction zone and an increase in the soot emission. These results have been reported into diagrams of stability where the flame configurations are connected to the competition between the dynamic effect of the injection velocity and the chemical effect of oxygen addition.展开更多
文摘The main aim of this paper is to investigate energy consumptions, CO2 emissions and costs during the production and life cycle of structural materials. The virgin and recycled metals as well as waste minerals such as fly ash, slag in concrete save energy consumption, CO2 emissions and costs. The importance and effectiveness of recycled materials will be statistically evaluated via energy consumption, carbon footprint, ultimate strength and their ratios. Embodied energy to ultimate strength or embodied carbon to ultimate strength ratios may emphasize the effectiveness of a sustainable material. The analyses in this study indicate the utilization of the recycled steel and C50 concrete with 50% fly ash or slag is the most efficient way of using sustainable materials.
文摘The energy and environmental impacts resulting from the buildings sector are one of the impending problems which address the international action. The main strategies implemented to answer to this problem are the energy efficiency improvement, the CO2 emissions reduction and the renewable energy share increase in the energy mix. The key subject discussed in this paper is the "building energy impact", aimed to leading the building sector towards the energy efficiency improvement. The paper's aim is to show that an energy assessment is not able to give a consistent evaluation of building energy use, and it could be misleading. Therefore, the paper proposes the exergy assessment as complementary evaluation method, in order to achieve a complete description of the concept "building's energy impact on the environment". In the first section, we describe the parameters currently used for the building energy assessment, focusing on the primary energy index and the CO2 emissions index. In the second section, we introduce the exergy as a complementary index. This index is a possible answer to the problems previously identified. Finally, in the third section, we present three test-cases, analyzed through transient simulation software TRNSYS. The purpose of the test-cases analysis is to show the difference between energy and exergy assessment.
文摘Oxygen rich combustion is a mean to increase the energy efficiency and to contribute to CO2 capture. Influence of oxygen enriched air on the stability of methane flames from non premixed laminar jets has been investigated experimentally. The burner consists of two coaxial jets: methane flowing out of the inner, oxidizer from the outer. The flame behavior is studied according to the proportion of oxygen in the oxidizer jet, the oxidizer and the methane jets velocities. The flame is either anchored to the burner, lifted, stationary or not or blown-out. The addition of oxygen produces a decrease of the lift height, a reduction of the length of the reaction zone and an increase in the soot emission. These results have been reported into diagrams of stability where the flame configurations are connected to the competition between the dynamic effect of the injection velocity and the chemical effect of oxygen addition.