For spontaneous combustion possibilities under large flux methane drainage in the goal, dynamic permeability in combination with the Forchheimer nonlinear equation was used to solve the problem of 3D oxygen distributi...For spontaneous combustion possibilities under large flux methane drainage in the goal, dynamic permeability in combination with the Forchheimer nonlinear equation was used to solve the problem of 3D oxygen distribution, heating law in goaf and to forecast the effects of fire protection by taking the fifth section face of the No. 18 coal seam in Nanshan Coal Mine as the basis for this study. The results demonstrate that if the vertical position of the drainage laneway is so low as to cause serious air leakage, a high oxygen concentration area exists in the return side of the goaf, and there is also a high temperature region which has faster heating rate than in the other areas. The effect of methane drainage on goal heating can be alleviated dramatically by simultaneous plugging and nitrogen injection. The results show that gas data in the return side of the goaf must be detected carefully in the work face, which is of similar drainage arrangement. Therefore, comprehensive fire protection measures should be carried out if conditions permit.展开更多
In order to understand the effect of river impoundment on carbon dynamics, a large reservoir in a subtropical area, the Xinanjiang Reservoir, was investigated in detail. CO_2 emissions from the water–air interface wa...In order to understand the effect of river impoundment on carbon dynamics, a large reservoir in a subtropical area, the Xinanjiang Reservoir, was investigated in detail. CO_2 emissions from the water–air interface was studied, as was organic carbon burial in sediment. The results show a significant seasonal difference in CO_2 emissions. River impoundment led to the enhancement of aquatic photosynthesis, generating large amounts of authigenic organic carbon that was then buried in sediment.展开更多
文摘For spontaneous combustion possibilities under large flux methane drainage in the goal, dynamic permeability in combination with the Forchheimer nonlinear equation was used to solve the problem of 3D oxygen distribution, heating law in goaf and to forecast the effects of fire protection by taking the fifth section face of the No. 18 coal seam in Nanshan Coal Mine as the basis for this study. The results demonstrate that if the vertical position of the drainage laneway is so low as to cause serious air leakage, a high oxygen concentration area exists in the return side of the goaf, and there is also a high temperature region which has faster heating rate than in the other areas. The effect of methane drainage on goal heating can be alleviated dramatically by simultaneous plugging and nitrogen injection. The results show that gas data in the return side of the goaf must be detected carefully in the work face, which is of similar drainage arrangement. Therefore, comprehensive fire protection measures should be carried out if conditions permit.
基金funded by the National Natural Science Foundation of China(No.41573064)the National Key Research and Development Program of China(No.2016YFA0601003)
文摘In order to understand the effect of river impoundment on carbon dynamics, a large reservoir in a subtropical area, the Xinanjiang Reservoir, was investigated in detail. CO_2 emissions from the water–air interface was studied, as was organic carbon burial in sediment. The results show a significant seasonal difference in CO_2 emissions. River impoundment led to the enhancement of aquatic photosynthesis, generating large amounts of authigenic organic carbon that was then buried in sediment.