Middle-sized chambers (40cmx40cmx20 cm) and an infrared gas analyzer (IRGA) were used for the measurement of net photosynthesis of the grass layer and soil CO2 evolution, in Quercus liaotungensis Koidz. forest, which ...Middle-sized chambers (40cmx40cmx20 cm) and an infrared gas analyzer (IRGA) were used for the measurement of net photosynthesis of the grass layer and soil CO2 evolution, in Quercus liaotungensis Koidz. forest, which is a typical temperate forest ecosystem in the mountainous areas of Beijing. Changes of CO2 concentrations in both the atmosphere (2m above canopy) and the forest canopy (2m below the top of the canopy) together with those of net photosynthesis and soil CO2 evolution were also examined, in order to find the characteristics of CO2 exchange between the different components of the temperate forest ecosystem and the atmosphere. Atmospheric CO2 averaged (323+10) and (330+1) mol mol-1 respectively in summer and autumn. During the 24-hour measurements, large differences as much as -46 and -61 mol mol-1 respectively in the atmosphere and forest were found. Net photosynthesis of the grass layer in summer was (2. 59 9+ 1.05) mol CO2 m-2 S-1, two times of that in autumn, (1.31+0.39) mol CO2 s-1 In summer, there was much more CO2 evolved from soil than in autumn, averaging (5.18+0.75) mol CO2 m-2 s-1 and (1.96 + 0.57) (mol CO2 m-2 s-1, respectively. A significant correlation was found between soil CO2 evolution and ground temperature, with F =-0.864 2+0.310 1X,r=0.7164, P<0.001 (n=117). Both the minimal atmospheric CO2 level and the maximum net photosynthesis occurred around 14:00; and an increase in atmospheric CO2 and of soil CO2 evolution during night times were also found to be remarkable.展开更多
The Mg-Ni hydride was prepared by hydriding combustion synthesis under a high magnetic field. The dehydriding kinetics of the hydrides was measured under the isothermal and non-isothermal conditions. A model was appli...The Mg-Ni hydride was prepared by hydriding combustion synthesis under a high magnetic field. The dehydriding kinetics of the hydrides was measured under the isothermal and non-isothermal conditions. A model was applied to analyzing the kinetics behavior of Mg-Ni hydride. The calculation results show that the theoretical value and the experimental data can reach a good agreement, especially in the case of non-isothermal dehydriding. The rate-controlling step is the diffusion of hydrogen atoms in the solid solution. The sample prepared under magnetic field of 6 T under the isothermal condition can reach the best performance. The similar tendency was observed under the non-isothermal condition and the reason was discussed.展开更多
This experiment was conducted in Xinxiang, Henan from June 2013 to June 2014. Total four treatments were designed including farmers ’ common practice (F, 250 kg/hm^2), 80% F (LF, 200 kg/hm^2), 80% F+biochar (LF...This experiment was conducted in Xinxiang, Henan from June 2013 to June 2014. Total four treatments were designed including farmers ’ common practice (F, 250 kg/hm^2), 80% F (LF, 200 kg/hm^2), 80% F+biochar (LFC) and no fertilizer (CK) to measure the dynamic emissions of CO2 and N2O from a summer maize-winter wheat field by static chamber-gas chromatography method. The results showed that the soil CO2 emission was 21.8-1 022.7 mg/(m^2·h), and was mainly influenced by soil temperature and moisture content. During the growth of summer maize, the soil CO2 emission was more significantly affected by soil moisture con-tent; and in winter wheat growing season, it was more significantly affected by soil temperature in the top 5 cm. The LF and LFC treatments significantly reduced the soil cumulative CO2 emission, especial y during the growth of winter wheat. Fertiliza-tion and irrigation were the main factors influencing the soil N2O emission. The soil N2O emission during the fertilization period accounted for 73.9%-74.5% and 40.5%-43.6% of the soil cumulative N2O emission during the summer maize-and winter wheat-growing season, respectively. The peak of emission fluxes was determined by fertilization amount, while the occurrence time of emission peak and emission re-duction effect were influenced by irrigation. The LF treatment reduced the soil cu-mulative N2O emission by 15.7%-16.8% and 18.1%-18.5% during the growth period of summer maize and winter wheat, respectively. Reduced nitrogen fertilization is an effective way for reducing N2O emission in intensive high-yielding farmland. Under a suitable nitrogen level (200 kg/hm^2), the application of biochar showed no significant effect on the soil N2O emission in a short term. The N2O emission factors of the L and LF treatments were 0.60% and 0.56%, respectively. ln the intensive high-yield-ing farmland of North China, reducing the nitrogen application amount is an appro-priate measure to mitigate greenhouse gas emissions without crop yield loss.展开更多
To design an accelerated method to evaluate thymopentin release from PLGA microspheres in vitro. Microspheres were prepared by double emulsion technique, using poly(lactide-co-glycolide) (PLGA) as carrier. At high...To design an accelerated method to evaluate thymopentin release from PLGA microspheres in vitro. Microspheres were prepared by double emulsion technique, using poly(lactide-co-glycolide) (PLGA) as carrier. At higher medium temperature (45℃, 50℃ and 55℃), an accelerated release testing in short time was studied and correlated with the conventional release (37℃) in vitro. The release in vitro of thymopentin from PLGA microspheres at 45 ℃, 50℃ and 55℃ was significantly accelerated (P 〈 0.05). In particular, at 50℃, an accelerated release (30 h) of the hydrophilic peptide from the PLGA matrix was achieved and correlated well with the conventional release (30 d). An accelerated release testing in vitro at higher temperature could be used to monitor thymopentin release from PLGA microspheres.展开更多
A novel wide-range CMOS variable gain amplifier (VGA) topology is presented. The proposed VGA is composed of a variable transconductor and a novel variable output resistor and can offer a high gain variation range o...A novel wide-range CMOS variable gain amplifier (VGA) topology is presented. The proposed VGA is composed of a variable transconductor and a novel variable output resistor and can offer a high gain variation range of 80dB while using a single variable-gain stage. Temperature-compensation and decibel-linear gain characteristic are achieved by using a control circuit that provides a gain error lower than ±1.5dB over the full temperature and gain ranges. Realized in 0.25μm CMOS technology, a prototype of the proposed VGA provides a total gain range of 64.5dB with 55.6dB-linear range,a P-1dB varying from - 17.5 to 11.5dBm,and a 3dB-bandwith varying from 65 to 860MHz while dissipating 16.5mW from a 2.5V supply voltage.展开更多
With an understanding of the processes of methane production, oxidation and emission, a semi-empirical model, focused on the contributions of rice plants to the processes and also the influence of environmental factor...With an understanding of the processes of methane production, oxidation and emission, a semi-empirical model, focused on the contributions of rice plants to the processes and also the influence of environmental factors, was developed to predict methane emission from rice paddy soils. In the present model, the amount of methane transported from the soil to the atmosphere was determined by the rates of CH4 production and an emitted fraction. The rates of CH4 production in irrigated rice soils were computed from the availability of methanogenic substrates that are primarily derived from rice plaaes and added organic matter and the influence of soil texture, soil redox potential and temperature. The fraction of methane emitted was assumed to be modulated by the rice plants and declines with rice growth and development. TO make it applicable to a wider area with limited data sets, a simplified version of the model was also derived to predict methane emission in a more practical manner.展开更多
The purpose of this paper is to apply "Soil and Water Assessment Tool (SWAT)" model to assess the impacts of climate change and deforestation on stream discharge and sediment yield from Phu Luong watershed in Nort...The purpose of this paper is to apply "Soil and Water Assessment Tool (SWAT)" model to assess the impacts of climate change and deforestation on stream discharge and sediment yield from Phu Luong watershed in Northern Viet Nam. Among the three climate change scenarios B 1, B2, and A2, representing low, medium, and high levels of greenhouse gas emission, respectively were set up for Viet Nam, the B2 scenario was selected for this study. Two land use scenarios (S1-2030 and $2-2050) were formulated combination with climate change in WSAT simulation. In B2 climate change scenario, mean temperature increases 0.7℃(2030) and 1.3 ℃ (2050); annual rainfall increases 2.1% (2030) and 3.80% (2050) respect to baseline scenario. The results show that the stream discharge is likely to increase in the future during the wet season with increasing threats of sedimentation.展开更多
The working conditions of the MK-3 type full hydraulic tunnel drilling machine during the course of drilling were analyzed. Based on the energy balance governing equations for the drill rod, the temperature field of d...The working conditions of the MK-3 type full hydraulic tunnel drilling machine during the course of drilling were analyzed. Based on the energy balance governing equations for the drill rod, the temperature field of drill rod at the normal and non-normal working conditions was numerically obtained. The numerical results show that the maximum temperature at the head of drill rod under the normal working circumstance is insufficient to ignite the gas. But under the non-normal working condition, the local high temperature can ignite the gas easily and cause the fire. In order to prevent the gas fire, the occurrence of the non-normal operating condition must be prevented as far as possible during the drilling.展开更多
Using numerical model simulations, global surface temperature is projected to increase by l^C to 4~C during the 21 st century, primarily as a result of increasing concentrations of greenhouse gases. In the present stu...Using numerical model simulations, global surface temperature is projected to increase by l^C to 4~C during the 21 st century, primarily as a result of increasing concentrations of greenhouse gases. In the present study, a predictive technique incorporating driving forces into an observation time series was used to project the global mean surface temperature under four representative sce- narios of future emissions over the 21st century.展开更多
In recent years, there have been considerable developments in energy provision with the growing improvements in energy supply security and support systems in China. However, China's energy system continues to reta...In recent years, there have been considerable developments in energy provision with the growing improvements in energy supply security and support systems in China. However, China's energy system continues to retain a high-carbon feature where coal dominates energy production and consumption, which has led to the rapid growth of greenhouse gas emissions and associated serious environmental pollution. It has therefore become an important task for China to consider how to promote the low-carbon development of energy system. This paper summarized the basic trends and challenges for development of low-carbon energy system in China and studied the primary energy consumption and carbon emissions in different scenarios at 10-year intervals between 2010 and 2050. The analysis showed that controlling coal consumption will have an important influence on the control of total carbon emissions and of carbon emission peaking; promotion of non-fossil fuel energies will offer a growing contribution to a low-carbon transition in the medium and long term; the development of carbon capture, utilization, and storage will play a key role in realizing a deep decarbonization pathway, particularly after 2030; and the establishment of a low-carbon power system is crucial for the achievement of low-carbon energy transition. Finally, the strategic considerations and policy suggestions on the development of low-carbon energy systems in China are explored.展开更多
Water mist technology provides efficient firefighting performance while there is still room for improvement. So varieties of additives have been studied in recent years both at home and abroad. The self-made additives...Water mist technology provides efficient firefighting performance while there is still room for improvement. So varieties of additives have been studied in recent years both at home and abroad. The self-made additives are used to compare the firefighting performance of diesel and heptane fire in open space. By adjusting the concentration of substance in the additives and conducting the experiment under the pressure of 0.3 MPa,0.5 MPa and 0.7 MPa,extinguish time and temperature are measured in the experiment. Through the experiments using different fuels,it can be found when the fuel is heptane that has a lower ignition point and a higher evaporation rate, the water mist additive can still significantly improve the firefighting performance. According to the data based on different concentrations of fluorinated surfactants,we find that fluorinated surfactants are the main substance to improve the performances by changing physical property of water mist. Optimal proportion of the additives for firefighting performance is found by experiment results.展开更多
The increasing pollution in the atmospheric layer has meant world-wide temperature variations, causing the melting of icecaps and floods, among other environmental factors. This change in temperature has been mainly c...The increasing pollution in the atmospheric layer has meant world-wide temperature variations, causing the melting of icecaps and floods, among other environmental factors. This change in temperature has been mainly caused by the indiscriminate emission of CO2, especially due to the rising number of vehicles in circulation. Researchers have identified that, among other types of fuel, diesel has the highest level of CO2 emission. Hence the need for the development of biodiesel, produced from oleaginous plants, aimed at reducing the emission of this harmful gas into the atmosphere, besides using renewable resources. However, as in any automation process, it is necessary to have sensors, actuators, and controllers, which together perform the automation and control of the production process. Besides that, there are other process variables to be accounted for, such as temperature, flow, and level. Considering such concept, and within the academic context, the creation process of a mini biodiesel plant will be described.展开更多
To investigate the frost-heave properties of silty clay under the combination action of seasonal freezing and artificial freezing, and verify the feasibility of combined freezing, eight combined freezing experiments w...To investigate the frost-heave properties of silty clay under the combination action of seasonal freezing and artificial freezing, and verify the feasibility of combined freezing, eight combined freezing experiments were performed on silty clay with water content (mass fraction) of 23.5% and 28.0%, through developed frost-heave test apparatus, in closed or open system. Two sorts of freezing temperature models, namely, constant and sine models, were applied to artificial freezing. The experimental results indicate that the frost-heave degree in seasonal freezing stage accounts for over 90% of the total in open system and it is up to 95% in closed system; the change of artificial sine-freezing temperature has no influence on the frost-heave degree in closed system, however, slight influence in open system. It is found that the variation of temperature gradient of sine-freezing specimen lags behind that of sine-freezing temperature with half phase; sine-freezing temperature model can reduce frost-heave degree of soil. Brand new technology is proposed for the application of artificial ground freezing and new study field of artificial freezing is created.展开更多
China clay was employed as an adsorbent for the removal of Mg 2+ from water at pH 7.0 within the temperature range of 303~328 K. The linearity of the plots indicated Langmuir type isotherms. The reaction was ex...China clay was employed as an adsorbent for the removal of Mg 2+ from water at pH 7.0 within the temperature range of 303~328 K. The linearity of the plots indicated Langmuir type isotherms. The reaction was exothermic. A maximum removal of 35% was obtained at 0.50 mmol L -1 metal concentration and a pH of 7.0 at 303 K. The H + rel /Mg 2+ ads ratio changed from a fractional value to 2.5. Strong chemical bondings took place between oxygen atom of the surface and Mg 2+ , resulting in a surface complex species. Temperature had a significant effect on H + rel , and the stability constants also increased with increasing temperature.展开更多
Many researches showed a comprehensive assessment of the cropping practice effect on greenhouse gas (GHG) emissions per unit yield (yield-scaled) rather than per the land area (area-scaled), and it was noteworth...Many researches showed a comprehensive assessment of the cropping practice effect on greenhouse gas (GHG) emissions per unit yield (yield-scaled) rather than per the land area (area-scaled), and it was noteworthy that cropping practices decided to increase or decrease grain yield, and reduce or promote greenhouse gas emissions. In this study, a meta-analysis was conducted to quantify the effects of rice basic seedlings (BS) on the global warming potential (GWP) of GHG emissions at the yield-scale in China. The results suggested that significant difference was observed in yield-scaled GWP of BS. The lowest yield-scaled GWP occurred at 80-100 BS (415.65 kg CO2 equiv/mg). The yield-scaled GHG emission from high to low was that of the hybrid rice varieties (1 028.86 kg CO2 equiv/mg), the conventional rice varieties (634.15 kg CO2 equiv/mg) and the super rice varieties (576.57 kg CO2 equiv/mg). Consequently, the model of conventional rice varieties and super rice varieties at 80-100 BS could be a scientifc method of matching inthe rice cropping system. A further assessment of rice density and variety impacts on GHG emissions at yield-scale was urgently needed to develop, so as to achieve win-win policies of rice production for higher yield with lower emissions.展开更多
[Objective] The aim was to study on response of N2O emissions of farm- land ecosystem on temperature rising. [Methed] In farmland ecosystem in Huaibei City in Anhui Province, N2O emission by twelve varieties of crop o...[Objective] The aim was to study on response of N2O emissions of farm- land ecosystem on temperature rising. [Methed] In farmland ecosystem in Huaibei City in Anhui Province, N2O emission by twelve varieties of crop on temperature was researched with DeNitrification-DeComposition (NDC). [Result] Response of dry- land crop on temperature rising can be divided into three categories, as follows: The first category, N2O emission of crop changed little during the temperature increasing, for example, from 0 to 3 %;, the emissions by potatoes, cotton, maize and rapeseed increased little and decreased little when temperature changed from 1.5 to 3 ℃. Crops of the second category declined with temperature increasing in N2O emission, for example, N2O emission decreased by 8.1% with temperature increasing from 0 to 3 ℃, including sugar cane, tobacco, wheat, soybean and pea. In third category, N2O emission of crop grew with temperature increasing, for example, the emission of rice, vegetables and fruit trees increased by 22.8% when the temperature grew from 0 to 3 ℃. [Conclusion] The research indicated that N2O emission in ecosystem of drv farmland increased little with temoerature risina.展开更多
The scientific evidence that climate is changing due to greenhouse gas emission is now incontestable, which may put many social, biological, and geophysical systems in the world at risk. In this paper, we first identi...The scientific evidence that climate is changing due to greenhouse gas emission is now incontestable, which may put many social, biological, and geophysical systems in the world at risk. In this paper, we first identified main risks induced from or aggravated by climate change. Then we categorized them applying a new risk categorization system brought forward by Renn in a framework of International Risk Governance Council. We proposed that "uncertainty" could be treated as the classification criteria. Based on this, we established a quantitative method with fuzzy set theory, in which "confidence" and "likelihood", the main quantitative terms for expressing uncertainties in IPCC, were used as the feature parameters to construct the fuzzy membership functions of four risk types. According to the maximum principle, most climate change risks identified were classified into the appropriate risk types. In the mean time, given that not all the quantitative terms are available, a qualitative approach was also adopted as a complementary classification method. Finally, we get the preliminary results of climate change risk categorization, which might iay the foundation for the future integrated risk management of climate change.展开更多
Biological characteristics of methane emission were compared among Oryza sativa, Panicum crus-galli andCyperus difformis grown on paddy soil. The order of the amounts of methane emitted was P. crus-galli > O. sativ...Biological characteristics of methane emission were compared among Oryza sativa, Panicum crus-galli andCyperus difformis grown on paddy soil. The order of the amounts of methane emitted was P. crus-galli > O. sativa >C. difformis, with the former two 11 and 8 times as much as that of the latter, respectively. And it was just opposite tothat of the methane-forming activities of roots of the three plants. The diurnal changes of methane emission of thethree plants were relatively consistent with valleys during 11:00-14:00 and midnight and peaks during 8:00-11: 00,14:00- 20:00 and about 5:00 early morning. The methanogenic activites in rhizospheric soils were higher than those innonrhizospheric soils with P. crus-galli and O. sativa, but not with C. difformis. The pathways of methane release ofP. crus-galli and O . sativa were probably through the top gaps near the junctions of nodal plate and leaf sheath, how-ever in C. difformistopgaps from which methane could escape into atmosphere were not found.展开更多
Given the growing awareness of the likely catastrophic impacts of climate change and close association of climate change with global emissions of greenhouse gases (of which carbon dioxide is more prominent) , consid...Given the growing awareness of the likely catastrophic impacts of climate change and close association of climate change with global emissions of greenhouse gases (of which carbon dioxide is more prominent) , considerable research efforts have been devoted to the analysis of carbon dioxide (CO2) emissions and its relationship to sustainable development. Now GHG reduction programs have been coming into effect in many developed coun- tries that have more responsibility for historical CO2 emissions, and the studies have become mature. First, the GHG emissions accounting system is more all-inclusive and the methods are more rational with the effort of IPCC from 1995 and all other research- ers related. Second, the responsibility allocation is more rational and fair. Along with the clarity of "carbon transfer" and "carbon leakage", the perspective and methodology for allocating regional COz emissions responsibility is turning from production base to consumption base. Third, the decomposition method has become more mature and more complex. For example, the decomposition formulas are including KAYA expression and input-output expres- sion and the decomposition techniques are developed from index analysis to simple average divisia and then adaptive-weighting divisia. Fourth, projection models have become more integrated and long-term. The top-down model and bottom-up model are both inter-embedded and synergetic. Trends above give some advice for the research on CO2 in China, such as emissions factors database construction, deeper-going research on emissions responsibility and structure analysis, promotion of modeling technology and technology-environment database.展开更多
基金This is a key project of National Natural Science Foundation of China.
文摘Middle-sized chambers (40cmx40cmx20 cm) and an infrared gas analyzer (IRGA) were used for the measurement of net photosynthesis of the grass layer and soil CO2 evolution, in Quercus liaotungensis Koidz. forest, which is a typical temperate forest ecosystem in the mountainous areas of Beijing. Changes of CO2 concentrations in both the atmosphere (2m above canopy) and the forest canopy (2m below the top of the canopy) together with those of net photosynthesis and soil CO2 evolution were also examined, in order to find the characteristics of CO2 exchange between the different components of the temperate forest ecosystem and the atmosphere. Atmospheric CO2 averaged (323+10) and (330+1) mol mol-1 respectively in summer and autumn. During the 24-hour measurements, large differences as much as -46 and -61 mol mol-1 respectively in the atmosphere and forest were found. Net photosynthesis of the grass layer in summer was (2. 59 9+ 1.05) mol CO2 m-2 S-1, two times of that in autumn, (1.31+0.39) mol CO2 s-1 In summer, there was much more CO2 evolved from soil than in autumn, averaging (5.18+0.75) mol CO2 m-2 s-1 and (1.96 + 0.57) (mol CO2 m-2 s-1, respectively. A significant correlation was found between soil CO2 evolution and ground temperature, with F =-0.864 2+0.310 1X,r=0.7164, P<0.001 (n=117). Both the minimal atmospheric CO2 level and the maximum net photosynthesis occurred around 14:00; and an increase in atmospheric CO2 and of soil CO2 evolution during night times were also found to be remarkable.
基金Project(51464008) supported by the National Natural Science Foundation of ChinaProject(KY[2012]004) supported by the Key Laboratory Item of Education Office in Guizhou Province,China
文摘The Mg-Ni hydride was prepared by hydriding combustion synthesis under a high magnetic field. The dehydriding kinetics of the hydrides was measured under the isothermal and non-isothermal conditions. A model was applied to analyzing the kinetics behavior of Mg-Ni hydride. The calculation results show that the theoretical value and the experimental data can reach a good agreement, especially in the case of non-isothermal dehydriding. The rate-controlling step is the diffusion of hydrogen atoms in the solid solution. The sample prepared under magnetic field of 6 T under the isothermal condition can reach the best performance. The similar tendency was observed under the non-isothermal condition and the reason was discussed.
基金Supported by National Key Technology Research and Development Program(2013BAD11B03)National Natural Science Foundation(31272249,31071865,41505100)~~
文摘This experiment was conducted in Xinxiang, Henan from June 2013 to June 2014. Total four treatments were designed including farmers ’ common practice (F, 250 kg/hm^2), 80% F (LF, 200 kg/hm^2), 80% F+biochar (LFC) and no fertilizer (CK) to measure the dynamic emissions of CO2 and N2O from a summer maize-winter wheat field by static chamber-gas chromatography method. The results showed that the soil CO2 emission was 21.8-1 022.7 mg/(m^2·h), and was mainly influenced by soil temperature and moisture content. During the growth of summer maize, the soil CO2 emission was more significantly affected by soil moisture con-tent; and in winter wheat growing season, it was more significantly affected by soil temperature in the top 5 cm. The LF and LFC treatments significantly reduced the soil cumulative CO2 emission, especial y during the growth of winter wheat. Fertiliza-tion and irrigation were the main factors influencing the soil N2O emission. The soil N2O emission during the fertilization period accounted for 73.9%-74.5% and 40.5%-43.6% of the soil cumulative N2O emission during the summer maize-and winter wheat-growing season, respectively. The peak of emission fluxes was determined by fertilization amount, while the occurrence time of emission peak and emission re-duction effect were influenced by irrigation. The LF treatment reduced the soil cu-mulative N2O emission by 15.7%-16.8% and 18.1%-18.5% during the growth period of summer maize and winter wheat, respectively. Reduced nitrogen fertilization is an effective way for reducing N2O emission in intensive high-yielding farmland. Under a suitable nitrogen level (200 kg/hm^2), the application of biochar showed no significant effect on the soil N2O emission in a short term. The N2O emission factors of the L and LF treatments were 0.60% and 0.56%, respectively. ln the intensive high-yield-ing farmland of North China, reducing the nitrogen application amount is an appro-priate measure to mitigate greenhouse gas emissions without crop yield loss.
文摘To design an accelerated method to evaluate thymopentin release from PLGA microspheres in vitro. Microspheres were prepared by double emulsion technique, using poly(lactide-co-glycolide) (PLGA) as carrier. At higher medium temperature (45℃, 50℃ and 55℃), an accelerated release testing in short time was studied and correlated with the conventional release (37℃) in vitro. The release in vitro of thymopentin from PLGA microspheres at 45 ℃, 50℃ and 55℃ was significantly accelerated (P 〈 0.05). In particular, at 50℃, an accelerated release (30 h) of the hydrophilic peptide from the PLGA matrix was achieved and correlated well with the conventional release (30 d). An accelerated release testing in vitro at higher temperature could be used to monitor thymopentin release from PLGA microspheres.
文摘A novel wide-range CMOS variable gain amplifier (VGA) topology is presented. The proposed VGA is composed of a variable transconductor and a novel variable output resistor and can offer a high gain variation range of 80dB while using a single variable-gain stage. Temperature-compensation and decibel-linear gain characteristic are achieved by using a control circuit that provides a gain error lower than ±1.5dB over the full temperature and gain ranges. Realized in 0.25μm CMOS technology, a prototype of the proposed VGA provides a total gain range of 64.5dB with 55.6dB-linear range,a P-1dB varying from - 17.5 to 11.5dBm,and a 3dB-bandwith varying from 65 to 860MHz while dissipating 16.5mW from a 2.5V supply voltage.
文摘With an understanding of the processes of methane production, oxidation and emission, a semi-empirical model, focused on the contributions of rice plants to the processes and also the influence of environmental factors, was developed to predict methane emission from rice paddy soils. In the present model, the amount of methane transported from the soil to the atmosphere was determined by the rates of CH4 production and an emitted fraction. The rates of CH4 production in irrigated rice soils were computed from the availability of methanogenic substrates that are primarily derived from rice plaaes and added organic matter and the influence of soil texture, soil redox potential and temperature. The fraction of methane emitted was assumed to be modulated by the rice plants and declines with rice growth and development. TO make it applicable to a wider area with limited data sets, a simplified version of the model was also derived to predict methane emission in a more practical manner.
文摘The purpose of this paper is to apply "Soil and Water Assessment Tool (SWAT)" model to assess the impacts of climate change and deforestation on stream discharge and sediment yield from Phu Luong watershed in Northern Viet Nam. Among the three climate change scenarios B 1, B2, and A2, representing low, medium, and high levels of greenhouse gas emission, respectively were set up for Viet Nam, the B2 scenario was selected for this study. Two land use scenarios (S1-2030 and $2-2050) were formulated combination with climate change in WSAT simulation. In B2 climate change scenario, mean temperature increases 0.7℃(2030) and 1.3 ℃ (2050); annual rainfall increases 2.1% (2030) and 3.80% (2050) respect to baseline scenario. The results show that the stream discharge is likely to increase in the future during the wet season with increasing threats of sedimentation.
基金Supported by the "863" Program(2003AA131100-02-06)the National Natural Science Foundation of China(50274061)
文摘The working conditions of the MK-3 type full hydraulic tunnel drilling machine during the course of drilling were analyzed. Based on the energy balance governing equations for the drill rod, the temperature field of drill rod at the normal and non-normal working conditions was numerically obtained. The numerical results show that the maximum temperature at the head of drill rod under the normal working circumstance is insufficient to ignite the gas. But under the non-normal working condition, the local high temperature can ignite the gas easily and cause the fire. In order to prevent the gas fire, the occurrence of the non-normal operating condition must be prevented as far as possible during the drilling.
基金supported by the National Natural Science Foundation of China (Grant Nos.40890052 and 41275087)
文摘Using numerical model simulations, global surface temperature is projected to increase by l^C to 4~C during the 21 st century, primarily as a result of increasing concentrations of greenhouse gases. In the present study, a predictive technique incorporating driving forces into an observation time series was used to project the global mean surface temperature under four representative sce- narios of future emissions over the 21st century.
文摘In recent years, there have been considerable developments in energy provision with the growing improvements in energy supply security and support systems in China. However, China's energy system continues to retain a high-carbon feature where coal dominates energy production and consumption, which has led to the rapid growth of greenhouse gas emissions and associated serious environmental pollution. It has therefore become an important task for China to consider how to promote the low-carbon development of energy system. This paper summarized the basic trends and challenges for development of low-carbon energy system in China and studied the primary energy consumption and carbon emissions in different scenarios at 10-year intervals between 2010 and 2050. The analysis showed that controlling coal consumption will have an important influence on the control of total carbon emissions and of carbon emission peaking; promotion of non-fossil fuel energies will offer a growing contribution to a low-carbon transition in the medium and long term; the development of carbon capture, utilization, and storage will play a key role in realizing a deep decarbonization pathway, particularly after 2030; and the establishment of a low-carbon power system is crucial for the achievement of low-carbon energy transition. Finally, the strategic considerations and policy suggestions on the development of low-carbon energy systems in China are explored.
基金Opening Fund of State Key Laboratory of Fire Science,University of Science and Technology of China(No.HZ2011-KF04)
文摘Water mist technology provides efficient firefighting performance while there is still room for improvement. So varieties of additives have been studied in recent years both at home and abroad. The self-made additives are used to compare the firefighting performance of diesel and heptane fire in open space. By adjusting the concentration of substance in the additives and conducting the experiment under the pressure of 0.3 MPa,0.5 MPa and 0.7 MPa,extinguish time and temperature are measured in the experiment. Through the experiments using different fuels,it can be found when the fuel is heptane that has a lower ignition point and a higher evaporation rate, the water mist additive can still significantly improve the firefighting performance. According to the data based on different concentrations of fluorinated surfactants,we find that fluorinated surfactants are the main substance to improve the performances by changing physical property of water mist. Optimal proportion of the additives for firefighting performance is found by experiment results.
文摘The increasing pollution in the atmospheric layer has meant world-wide temperature variations, causing the melting of icecaps and floods, among other environmental factors. This change in temperature has been mainly caused by the indiscriminate emission of CO2, especially due to the rising number of vehicles in circulation. Researchers have identified that, among other types of fuel, diesel has the highest level of CO2 emission. Hence the need for the development of biodiesel, produced from oleaginous plants, aimed at reducing the emission of this harmful gas into the atmosphere, besides using renewable resources. However, as in any automation process, it is necessary to have sensors, actuators, and controllers, which together perform the automation and control of the production process. Besides that, there are other process variables to be accounted for, such as temperature, flow, and level. Considering such concept, and within the academic context, the creation process of a mini biodiesel plant will be described.
基金Project(40571032) supported by the National Natural Science Foundation of ChinaProject(2006G011-B-3) supported by Science Studies and Development Plan Foundation of Railway Ministry
文摘To investigate the frost-heave properties of silty clay under the combination action of seasonal freezing and artificial freezing, and verify the feasibility of combined freezing, eight combined freezing experiments were performed on silty clay with water content (mass fraction) of 23.5% and 28.0%, through developed frost-heave test apparatus, in closed or open system. Two sorts of freezing temperature models, namely, constant and sine models, were applied to artificial freezing. The experimental results indicate that the frost-heave degree in seasonal freezing stage accounts for over 90% of the total in open system and it is up to 95% in closed system; the change of artificial sine-freezing temperature has no influence on the frost-heave degree in closed system, however, slight influence in open system. It is found that the variation of temperature gradient of sine-freezing specimen lags behind that of sine-freezing temperature with half phase; sine-freezing temperature model can reduce frost-heave degree of soil. Brand new technology is proposed for the application of artificial ground freezing and new study field of artificial freezing is created.
文摘China clay was employed as an adsorbent for the removal of Mg 2+ from water at pH 7.0 within the temperature range of 303~328 K. The linearity of the plots indicated Langmuir type isotherms. The reaction was exothermic. A maximum removal of 35% was obtained at 0.50 mmol L -1 metal concentration and a pH of 7.0 at 303 K. The H + rel /Mg 2+ ads ratio changed from a fractional value to 2.5. Strong chemical bondings took place between oxygen atom of the surface and Mg 2+ , resulting in a surface complex species. Temperature had a significant effect on H + rel , and the stability constants also increased with increasing temperature.
文摘Many researches showed a comprehensive assessment of the cropping practice effect on greenhouse gas (GHG) emissions per unit yield (yield-scaled) rather than per the land area (area-scaled), and it was noteworthy that cropping practices decided to increase or decrease grain yield, and reduce or promote greenhouse gas emissions. In this study, a meta-analysis was conducted to quantify the effects of rice basic seedlings (BS) on the global warming potential (GWP) of GHG emissions at the yield-scale in China. The results suggested that significant difference was observed in yield-scaled GWP of BS. The lowest yield-scaled GWP occurred at 80-100 BS (415.65 kg CO2 equiv/mg). The yield-scaled GHG emission from high to low was that of the hybrid rice varieties (1 028.86 kg CO2 equiv/mg), the conventional rice varieties (634.15 kg CO2 equiv/mg) and the super rice varieties (576.57 kg CO2 equiv/mg). Consequently, the model of conventional rice varieties and super rice varieties at 80-100 BS could be a scientifc method of matching inthe rice cropping system. A further assessment of rice density and variety impacts on GHG emissions at yield-scale was urgently needed to develop, so as to achieve win-win policies of rice production for higher yield with lower emissions.
基金Supported by National Natural Science Foundation of China(40930530)~~
文摘[Objective] The aim was to study on response of N2O emissions of farm- land ecosystem on temperature rising. [Methed] In farmland ecosystem in Huaibei City in Anhui Province, N2O emission by twelve varieties of crop on temperature was researched with DeNitrification-DeComposition (NDC). [Result] Response of dry- land crop on temperature rising can be divided into three categories, as follows: The first category, N2O emission of crop changed little during the temperature increasing, for example, from 0 to 3 %;, the emissions by potatoes, cotton, maize and rapeseed increased little and decreased little when temperature changed from 1.5 to 3 ℃. Crops of the second category declined with temperature increasing in N2O emission, for example, N2O emission decreased by 8.1% with temperature increasing from 0 to 3 ℃, including sugar cane, tobacco, wheat, soybean and pea. In third category, N2O emission of crop grew with temperature increasing, for example, the emission of rice, vegetables and fruit trees increased by 22.8% when the temperature grew from 0 to 3 ℃. [Conclusion] The research indicated that N2O emission in ecosystem of drv farmland increased little with temoerature risina.
基金Under the auspices of National Science & Technology Pillar Program During the 11th Five-Year Plan Period (No 2006BAD20B05)
文摘The scientific evidence that climate is changing due to greenhouse gas emission is now incontestable, which may put many social, biological, and geophysical systems in the world at risk. In this paper, we first identified main risks induced from or aggravated by climate change. Then we categorized them applying a new risk categorization system brought forward by Renn in a framework of International Risk Governance Council. We proposed that "uncertainty" could be treated as the classification criteria. Based on this, we established a quantitative method with fuzzy set theory, in which "confidence" and "likelihood", the main quantitative terms for expressing uncertainties in IPCC, were used as the feature parameters to construct the fuzzy membership functions of four risk types. According to the maximum principle, most climate change risks identified were classified into the appropriate risk types. In the mean time, given that not all the quantitative terms are available, a qualitative approach was also adopted as a complementary classification method. Finally, we get the preliminary results of climate change risk categorization, which might iay the foundation for the future integrated risk management of climate change.
文摘Biological characteristics of methane emission were compared among Oryza sativa, Panicum crus-galli andCyperus difformis grown on paddy soil. The order of the amounts of methane emitted was P. crus-galli > O. sativa >C. difformis, with the former two 11 and 8 times as much as that of the latter, respectively. And it was just opposite tothat of the methane-forming activities of roots of the three plants. The diurnal changes of methane emission of thethree plants were relatively consistent with valleys during 11:00-14:00 and midnight and peaks during 8:00-11: 00,14:00- 20:00 and about 5:00 early morning. The methanogenic activites in rhizospheric soils were higher than those innonrhizospheric soils with P. crus-galli and O. sativa, but not with C. difformis. The pathways of methane release ofP. crus-galli and O . sativa were probably through the top gaps near the junctions of nodal plate and leaf sheath, how-ever in C. difformistopgaps from which methane could escape into atmosphere were not found.
基金the helpful funding from the Ministry for Science and technology of China (GrantNo. 2007BAC03A11-04)National Natural Science Foundation of China (Grant No. 41101118)+1 种基金China Postdoctor Science Foundation (Grant No. 20100480438)National Project 973 (Grant No.2012CB95570002)
文摘Given the growing awareness of the likely catastrophic impacts of climate change and close association of climate change with global emissions of greenhouse gases (of which carbon dioxide is more prominent) , considerable research efforts have been devoted to the analysis of carbon dioxide (CO2) emissions and its relationship to sustainable development. Now GHG reduction programs have been coming into effect in many developed coun- tries that have more responsibility for historical CO2 emissions, and the studies have become mature. First, the GHG emissions accounting system is more all-inclusive and the methods are more rational with the effort of IPCC from 1995 and all other research- ers related. Second, the responsibility allocation is more rational and fair. Along with the clarity of "carbon transfer" and "carbon leakage", the perspective and methodology for allocating regional COz emissions responsibility is turning from production base to consumption base. Third, the decomposition method has become more mature and more complex. For example, the decomposition formulas are including KAYA expression and input-output expres- sion and the decomposition techniques are developed from index analysis to simple average divisia and then adaptive-weighting divisia. Fourth, projection models have become more integrated and long-term. The top-down model and bottom-up model are both inter-embedded and synergetic. Trends above give some advice for the research on CO2 in China, such as emissions factors database construction, deeper-going research on emissions responsibility and structure analysis, promotion of modeling technology and technology-environment database.