Partial discharge measurement is one of the most effective methods to find insulation defects and early failure of high voltage power equipments. The accuracy is significantly reduced by the interference in the partia...Partial discharge measurement is one of the most effective methods to find insulation defects and early failure of high voltage power equipments. The accuracy is significantly reduced by the interference in the partial discharge on-site detection or on-line monitoring, especially by the pulse interference. This paper studies the phase correlation of some types of typical partial discharge pulses and their characteristics in time domain and frequency domain. By collecting enough partial discharge pulse data, the correlation coefficient can be calculated based on both phase correlation and waveform similarity. The type of pulse will be determined by the scope of the calculated correlation coefficient. The pulses with very strong correlation will be identified as periodic pulse interference. The pulses with very weak correlation will be identified as random pulse interference. Only the pulses whose correlation coefficients fall into a specific range will be identified as partial discharge signals. In laboratory, simulated pulse interference is injected into measurement circuit, and typical partial discharge pulses are sampled by a high-speed acquisition system. The pulse interference can be effectively separated from partial discharge signals by correlation coefficient.展开更多
文摘Partial discharge measurement is one of the most effective methods to find insulation defects and early failure of high voltage power equipments. The accuracy is significantly reduced by the interference in the partial discharge on-site detection or on-line monitoring, especially by the pulse interference. This paper studies the phase correlation of some types of typical partial discharge pulses and their characteristics in time domain and frequency domain. By collecting enough partial discharge pulse data, the correlation coefficient can be calculated based on both phase correlation and waveform similarity. The type of pulse will be determined by the scope of the calculated correlation coefficient. The pulses with very strong correlation will be identified as periodic pulse interference. The pulses with very weak correlation will be identified as random pulse interference. Only the pulses whose correlation coefficients fall into a specific range will be identified as partial discharge signals. In laboratory, simulated pulse interference is injected into measurement circuit, and typical partial discharge pulses are sampled by a high-speed acquisition system. The pulse interference can be effectively separated from partial discharge signals by correlation coefficient.