Cu/diamond composites have been considered as the next generation of thermal management material for electronic packages and heat sinks applications. Cu/diamond composites with different volume fractions of diamond we...Cu/diamond composites have been considered as the next generation of thermal management material for electronic packages and heat sinks applications. Cu/diamond composites with different volume fractions of diamond were successfully prepared by spark plasma sintering(SPS) method. The sintering temperatures and volume fractions(50%, 60% and 70%) of diamond were changed to investigate their effects on the relative density, homogeneity of the microstructure and thermal conductivity of the composites. The results show that the relative density, homogeneity of the microstructure and thermal conductivity of the composites increase with decreasing the diamond volume fraction; the relative density and thermal conductivity of the composites increase with increasing the sintering temperature. The thermal conductivity of the composites is a result of the combined effect of the volume fraction of diamond, the homogeneity and relative density of the composites.展开更多
SO2 release and removal were studied under both the air and oxy-fuel combustion conditions using an anthracite coal from the Jincheng mine in China on a bench-scale fluidized bed combustor (FBC). Special attention w...SO2 release and removal were studied under both the air and oxy-fuel combustion conditions using an anthracite coal from the Jincheng mine in China on a bench-scale fluidized bed combustor (FBC). Special attention was paid to the effects of the combustion atmosphere, 02 concentration, bed temperature, and limestone addition. The released amount of SO2 was clearly higher under 30% 02/70% CO2 than that of the air atmosphere. As the O2 concentration in O2/CO2 mixture increased from 21% to 40%, the released amount of SO2 increased significantly, but then it decreased when the 02 concentration increased up to 50%. The bed temperature from 860 to 920 ℃ has no obvious influence on the the SO2 release but shows a strong influence on the desulfurization with limestone in both oxy-fuel and air conditions. The maximum SO2 removal efficiency appears to be at 880 to 900 ℃ for both the air and oxy-fuel combustion conditions.展开更多
The prospect of employing Light Amplification by Stimulated Emission of Radiation(LASER) for well drilling in oil and gas industry was examined.In this work,the experimental works carried out on various oil well drill...The prospect of employing Light Amplification by Stimulated Emission of Radiation(LASER) for well drilling in oil and gas industry was examined.In this work,the experimental works carried out on various oil well drilling operations was discussed.The results show that,LASER or LASER-aided oil and gas well drilling has many potential advantages over conventional rotary drilling,including high penetration rate,reduction or elimination of tripping,casing,bit costs,enhanced well control,as well as perforating and side-tracking capabilities.The investigation also reveals that modern infrared LASERs have a higher rate of rock cuttings removal than that of conventional rotary drilling and flame-jet spallation.It also reveals that LASER can destroy rock without damaging formation permeability but rather,it enhances or improves permeability and that permeability and porosity increases in all rock types.The paper has therefore provided more knowledge on the potential value to drilling operations and techniques using LASER.展开更多
Aimed at determining the appropriate caving–mining ratio for fully mechanized mining of 20 m thick coal seam, this research investigated the effects of caving–mining ratio on the flow fields of coal and waste rocks,...Aimed at determining the appropriate caving–mining ratio for fully mechanized mining of 20 m thick coal seam, this research investigated the effects of caving–mining ratio on the flow fields of coal and waste rocks, amount of cyclically caved coal and top coal loss by means of numerical modeling. The research was based on the geological conditions of panel 8102 in Tashan coal mine. The results indicated the loose coal and waste rocks formed an elliptical zone around the drawpoint. The ellipse enlarged with decreasing caving–mining ratio. And its long axis inclined to the gob gradually became vertical and facilitating the caving and recovery of top coal. The top coal loss showed a cyclical variation; and the loss cycle was shortened with the decreasing in caving–mining ratio. Moreover, the mean squared error(MSE) of the amount of cyclically caved coal went up with increasing caving–mining ratio, indicating a growing imbalance of amount of cyclically caved coal, which could impede the coordinated mining and caving operations. Finally it was found that a caving–mining ratio of 1:2.51 should be reasonable for the conditions.展开更多
In this study, the authors developed an en- semble of Elman neural networks to forecast the spatial and temporal distribution of fossil-fuel emissions (ff) in 2009. The authors built and trained 29 Elman neural net-...In this study, the authors developed an en- semble of Elman neural networks to forecast the spatial and temporal distribution of fossil-fuel emissions (ff) in 2009. The authors built and trained 29 Elman neural net- works based on the monthly average grid emission data (1979-2008) from different geographical regions. A three-dimensional global chemical transport model, God- dard Earth Observing System (GEOS)-Chem, was applied to verify the effectiveness of the networks. The results showed that the networks captured the annual increasing trend and interannual variation of ff well. The difference between the simulations with the original and predicted ff ranged from -1 ppmv to 1 ppmv globally. Meanwhile, the authors evaluated the observed and simulated north-south gradient of the atmospheric CO2 concentrations near the surface. The two simulated gradients appeared to have a similar changing pattern to the observations, with a slightly higher background CO2 concentration, - 1 ppmv. The results indicate that the Elman neural network is a useful tool for better understanding the spatial and tem- poral distribution of the atmospheric C02 concentration and ft.展开更多
The three-point bending experiments were applied to investigating effects of loading rates on fracture toughness of Huanglong limestone. The fracture toughness of Huanglong limestone was measured over a wide range of ...The three-point bending experiments were applied to investigating effects of loading rates on fracture toughness of Huanglong limestone. The fracture toughness of Huanglong limestone was measured over a wide range of loading rates from 9 × 10-4 to 1.537 MPa.m1/2/s. According to the approximate relationship between static and dynamic fracture toughness of Huanglong limestone, relationship between the growth velocity of crack and dynamic fracture toughness was obtained. The main conclusions are summarized as follows. (1) When the loading rate is higher than 0.027 MPa-ml/2/s, the fracture toughness of Huanglong limestone increases markedly with increasing loading rate. However, when loading rate is lower than 0.027 MPa-ml/2/s, fracture toughness slightly increases with an increase in loading rate. (2) It is found from experimental results that fracture toughness is linearly proportional to the logarithmic expression of loading rate. (3) For Huanglong limestone, when the growth velocity of crack is lower than 100 m/s, the energy release rate slightly decreases with increasing the growth velocity of crack. However, when the growth velocity of crack is higher than 1 000 m/s, the energy release rate dramatically decreases with an increase in the crack growth velocity.展开更多
In efforts to overcome an foreseeable energy crisis predicated on limited oil and gas supplies, reserves; economic variations facing the world, and of course the environmental side effects of fossil fuels, an urgent n...In efforts to overcome an foreseeable energy crisis predicated on limited oil and gas supplies, reserves; economic variations facing the world, and of course the environmental side effects of fossil fuels, an urgent need for energy sources that provide sustainable, safe and economic supplies for the world is imperative. The current fossil fuel energy system must be improved to ensure a better and cleaner transportation future for the world. Despite the fact that the marine transportation sector consumes only 5% of global petroleum production; it is responsible for 15% of the world NOx and SOx emissions. These figures must be the engine that powers the scientific research worldwide to develop new solutions for a very old energy problem. In this paper, the most effective types of marine power plants were discussed. The history of the development of each type was presented first and the technical aspects were discussed second. Also, the fuel ceils as a new type of power plants used in marine sector were briefed to give a complete overview of the past, present and future of the marine power plants development. Based on the increased worldwide concerns regarding harmful emissions, many researchers have introduced solutions to this problem, including the adoption of new cleaner fuels. This paper was guided using the same trend and by implementing the hydrogen as fuel for marine internal combustion engine, gas turbines, and fuel cells.展开更多
Syenogranitic dykes in the north of Egypt's Eastern Desert are of geological and economic interest because of the presence of magmatic and supergene enrichment of radioactive mineralization. Zircon crystal morphol...Syenogranitic dykes in the north of Egypt's Eastern Desert are of geological and economic interest because of the presence of magmatic and supergene enrichment of radioactive mineralization. Zircon crystal morphology within the syenogranitic dykes allows precise definition of sub-alkaline series granites and crystallized at mean temperature of about 637 °C. The growth pattern of the zircons suggest magmatic and hydrothermal origins of radioactive mineralization. Hydrothermal processes are responsible for the formation of significant zircon overgrowth; high U-zircon margins might have occurred contemporaneously with the emplacement of syenogranitic dykes which show anomalous uranium(e U) and thorium(e Th) contents of up to 1386 and 7330 ppm, respectively.Zircon chemistry revealed a relative increase of Hf consistent with decreasing Zr content, suggesting the replacement of Zr by Hf during hydrothermal activity.Visible uranium mineralization is present and recognized by the presence of uranophane and autunite.展开更多
A plumbomicrolite concentrate(PMC)was leached with the mixture of HF and H2SO4,HF and HNO3 acids,respectively.Optimal conditions ensuring high recovery of tantalum and niobium(up to 99%)into solution,and radionuclides...A plumbomicrolite concentrate(PMC)was leached with the mixture of HF and H2SO4,HF and HNO3 acids,respectively.Optimal conditions ensuring high recovery of tantalum and niobium(up to 99%)into solution,and radionuclides into insoluble residue were determined.Fluoride-sulfuric acid and fluoride-nitric acid schemes were proposed for PMC leaching by an extractive separation of tantalum form niobium,lead and impurities,and production of high-purity tantalum compounds.Octanol-1 was used as an extractant.Optimal conditions for production of high-purity tantalum strip solutions were defined for all stages(extraction-scrubbing-stripping).Produced tantalum compounds,such as tantalum pentoxide and potassium heptafluotanthalate,comply with the norms for high-purity substances in terms of impurities content.Final choice of the PMC processing scheme is determined by its profitability.展开更多
China's energy carbon emissions are projected to peak in 2030 with approximately 110% of its 2020 level under the following conditions: 1) China's gross primary energy consumption is 5 Gtce in 2020 and 6 Gtce in 2...China's energy carbon emissions are projected to peak in 2030 with approximately 110% of its 2020 level under the following conditions: 1) China's gross primary energy consumption is 5 Gtce in 2020 and 6 Gtce in 2030; 2) coal's share of the energy consumption is 61% in 2020 and 55% in 2030; 3) non-fossil energy's share increases from 15% in 2020 to 20% in 2030; 4) through 2030, China's GDP grows at an average annual rate of 6%; 5) the annual energy consumption elasticity coefficient is 0.30 in average; and 6) the annual growth rate of energy consumption steadily reduces to within 1%. China's electricity generating capacity would be 1,990 GW, with 8,600 TW h of power generation output in 2020. Of that output 66% would be from coal, 5% from gas, and 29% from non-fossil energy. By 2030, electricity generating capacity would reach 3,170 GW with 11,900 TW h of power generation output. Of that output, 56% would be from coal, 6% from gas, and 37% from non-fossil energy. From 2020 to 2030, CO2 emissions from electric power would relatively fall by 0.2 Gt due to lower coal consumption, and rela- tively fall by nearly 0.3 Gt with the installation of more coal-fired cogeneration units. During 2020--2030, the portion of carbon emissions from electric power in China's energy consumption is projected to increase by 3.4 percentage points. Although the carbon emissions from electric power would keep increasing to 118% of the 2020 level in 2030, the electric power industry would continue to play a decisive role in achieving the goal of increase in non-fossil energy use. This study proposes countermeasures and recommendations to control carbon emissions peak, including energy system optimization, green-coal-fired electricity generation, and demand side management.展开更多
The issues of reducing CO_2 emissions, sustainably utilizing natural mineral resources, and dealing with industrial waste offer challenges for sustainable development in energy and the environment. We propose an effic...The issues of reducing CO_2 emissions, sustainably utilizing natural mineral resources, and dealing with industrial waste offer challenges for sustainable development in energy and the environment. We propose an efficient methodology via the co-reaction of K-feldspar and phosphogypsum for the extraction of soluble potassium salts and recovery of SO_2 with reduced CO_2 emission and energy consumption. The results of characterization and reactivity evaluation indicated that the partial melting of K-feldspar and phosphogypsum in the hightemperature co-reaction significantly facilitated the reduction of phosphogypsum to SO_2 and the exchange of K^+(K-feldspar) with Ca^(2+)(CaSO_4 in phosphogypsum). The reaction parameters were systematically investigated with the highest sulfur recovery ratio of ~ 60% and K extraction ratio of ~ 87.7%. This novel methodology possesses an energy consumption reduction of ~ 28% and CO_2 emission reduction of ~ 55% comparing with the present typical commercial technologies for utilization of K-feldspar and the treatment of phosphogypsum.展开更多
The catalytic combustion technology for treating waste gases exiting from wastewater treatment system and oil separators in petrochemical enterprises was introduced in this article. Commercial application of this tech...The catalytic combustion technology for treating waste gases exiting from wastewater treatment system and oil separators in petrochemical enterprises was introduced in this article. Commercial application of this technology showed that the process "desulfurization and total hydrocarbon concentration homogenizationcatalytic combustion" and the associated WSH-1 combustion catalyst were suitable for treating volatile organic gases emitted from the oil separators, floatation tanks, inlet water-collecting well, waste oil tanks, etc. The commercial unit was equipped with an advanced auto-control system, featuring a simple operation and low energy consumption with good treatment effect. The purified gases could meet the national emission standard.展开更多
Dielectric barrier discharge(DBD) plasma is considered to be a promising method to synthesize solid catalysts. In this work, DBD plasma was used to synthesize a nitrogen‐vacancy‐doped g‐C3N4 catalyst in situ for ...Dielectric barrier discharge(DBD) plasma is considered to be a promising method to synthesize solid catalysts. In this work, DBD plasma was used to synthesize a nitrogen‐vacancy‐doped g‐C3N4 catalyst in situ for the first time. X‐ray diffraction, N2 adsorption, ultraviolet–visible spectroscopy, scanning electron microscopy, transmission electron microscopy, X‐ray photoelectron spectrosco‐py, electrochemical impedance spectroscopy, electron paramagnetic resonance, O2 tempera‐ture‐programmed desorption, and photoluminescence were used to characterize the obtained cat‐alysts. The photocatalytic H2O2 production ability of the as‐prepared catalyst was investigated. The results show that plasma treatment influences the morphology, structure, and optical properties of the as‐prepared catalyst. Nitrogen vacancies are active centers, which can adsorb reactant oxygen molecules, trap photoelectrons, and promote the transfer of photoelectrons from the catalyst to the adsorbed oxygen molecules for the subsequent reduction reaction. This work provides a new strat‐egy for synthesizing g‐C3N4‐based catalysts.展开更多
Psidium guajava (guava) leaf is a phytotherapic used in folk medicine to treat gastrointestinal and respiratory dis-turbances and is used as anti-inflammatory medicine. In nuclear medicine, blood constituents (BC) are...Psidium guajava (guava) leaf is a phytotherapic used in folk medicine to treat gastrointestinal and respiratory dis-turbances and is used as anti-inflammatory medicine. In nuclear medicine, blood constituents (BC) are labelled with techne-tium-99m (99mTc) and used to image procedures. However, data have demonstrated that synthetic or natural drugs could modify the labelling of BC with 99mTc. The aim of this work was to evaluate the effects of aqueous extract of guava leaves on the labelling of BC with 99mTc. Blood samples of Wistar rats were incubated with different concentrations of guava extract and labelled with 99mTc after the percentage of incorporated radioactivity (%ATI) in BC was determined. The results suggest that aqueous guava extract could present antioxidant action and/or alters the membrane structures involved in ion transport into cells, thus decreasing the radiolabelling of BC with 99mTc. The data showed significant (P<0.05) alteration of ATI in BC from blood incubated with guava extract.展开更多
Plant carbon sequestration is an effective way to abate the global warming. However, the field-scale carbon exchange on a peach orchard remains unclear. Here, using an eddy covariance technique, the net ecosystem carb...Plant carbon sequestration is an effective way to abate the global warming. However, the field-scale carbon exchange on a peach orchard remains unclear. Here, using an eddy covariance technique, the net ecosystem carbon dioxide exchange and energy balance were analyzed on a coarse-sand-field, no-tillage, 12-year-old-peach orchard. The results showed that during full flowering, the ability to sequestrate carbon was significant, it reached on the peak of-0.33 mg (CO2) m^-2 s^-1. During rapid growth, the Bowen ratio was under 0.3 and daily net carbon sequestration reached on the peak of-25.1 g (CO2) m^-2 d^-1. During the leaf fall stage, there is a great deal of CO2 emissions, the peak value of carbon sequestration reached +0.60 mg (CO2) m^-2 s^-1. During monitoring period, the daily average of net carbon sequestration and Bowen ratio was 1.22 ± 1.56 and -2.90 ± 6.63 g (CO2) m^-2 d^-1, respectively. The net carbon sequestration could reach -1,052 g (CO2) m^-2 in a year. These results reveal that there is high carbon sequestration on a coarse-sand-field, no-tillage peach orchard.展开更多
An innovative technology of high-voltage pulse discharge(HVPD)was proposed to investigate the comminution characteristics of galena ore.The optimal experiment parameters were determined as follows:spark gap spacing of...An innovative technology of high-voltage pulse discharge(HVPD)was proposed to investigate the comminution characteristics of galena ore.The optimal experiment parameters were determined as follows:spark gap spacing of 25 mm,pulse number of 120,and voltage of 25 k V.The mass fraction with size<0.074 mm in ground products was improved by the HVPD.Meanwhile,the relative grindability declined with the increase of the grinding time,which indicated that the superiority of HVPD was weakened.The ground products of HVPD were distributed more homogeneously than those of mechanical crushing.The liberation of breakage products was improved by 24.57%via the HVPD.Moreover,the Brunauer–Emmett–Teller(BET)specific surface area,pore volume,and average pore size were increased via the HVPD.Scanning electron microscopy(SEM)and energy-dispersive X-ray spectroscopy(EDS)analyses suggested that obvious grain-boundary breakage and several stomatal traces were observed in the HVPD products.展开更多
文摘Cu/diamond composites have been considered as the next generation of thermal management material for electronic packages and heat sinks applications. Cu/diamond composites with different volume fractions of diamond were successfully prepared by spark plasma sintering(SPS) method. The sintering temperatures and volume fractions(50%, 60% and 70%) of diamond were changed to investigate their effects on the relative density, homogeneity of the microstructure and thermal conductivity of the composites. The results show that the relative density, homogeneity of the microstructure and thermal conductivity of the composites increase with decreasing the diamond volume fraction; the relative density and thermal conductivity of the composites increase with increasing the sintering temperature. The thermal conductivity of the composites is a result of the combined effect of the volume fraction of diamond, the homogeneity and relative density of the composites.
基金The National Natural Science Foundation for Young Scholars of China(No.51106038)the National Key Technology R&D Program of China during the 12th Five-Year Plan Period(No.2012BAA02B01-04)
文摘SO2 release and removal were studied under both the air and oxy-fuel combustion conditions using an anthracite coal from the Jincheng mine in China on a bench-scale fluidized bed combustor (FBC). Special attention was paid to the effects of the combustion atmosphere, 02 concentration, bed temperature, and limestone addition. The released amount of SO2 was clearly higher under 30% 02/70% CO2 than that of the air atmosphere. As the O2 concentration in O2/CO2 mixture increased from 21% to 40%, the released amount of SO2 increased significantly, but then it decreased when the 02 concentration increased up to 50%. The bed temperature from 860 to 920 ℃ has no obvious influence on the the SO2 release but shows a strong influence on the desulfurization with limestone in both oxy-fuel and air conditions. The maximum SO2 removal efficiency appears to be at 880 to 900 ℃ for both the air and oxy-fuel combustion conditions.
文摘The prospect of employing Light Amplification by Stimulated Emission of Radiation(LASER) for well drilling in oil and gas industry was examined.In this work,the experimental works carried out on various oil well drilling operations was discussed.The results show that,LASER or LASER-aided oil and gas well drilling has many potential advantages over conventional rotary drilling,including high penetration rate,reduction or elimination of tripping,casing,bit costs,enhanced well control,as well as perforating and side-tracking capabilities.The investigation also reveals that modern infrared LASERs have a higher rate of rock cuttings removal than that of conventional rotary drilling and flame-jet spallation.It also reveals that LASER can destroy rock without damaging formation permeability but rather,it enhances or improves permeability and that permeability and porosity increases in all rock types.The paper has therefore provided more knowledge on the potential value to drilling operations and techniques using LASER.
基金provided by the independent research subject of State Key Laboratory of Coal Resources and Mine Safety of China University of Mining and Technology (No. SKLCRSM12X03)the Scientific Research and Innovation Project for College Graduates in Jiangsu (No. CXZZ13_0947)
文摘Aimed at determining the appropriate caving–mining ratio for fully mechanized mining of 20 m thick coal seam, this research investigated the effects of caving–mining ratio on the flow fields of coal and waste rocks, amount of cyclically caved coal and top coal loss by means of numerical modeling. The research was based on the geological conditions of panel 8102 in Tashan coal mine. The results indicated the loose coal and waste rocks formed an elliptical zone around the drawpoint. The ellipse enlarged with decreasing caving–mining ratio. And its long axis inclined to the gob gradually became vertical and facilitating the caving and recovery of top coal. The top coal loss showed a cyclical variation; and the loss cycle was shortened with the decreasing in caving–mining ratio. Moreover, the mean squared error(MSE) of the amount of cyclically caved coal went up with increasing caving–mining ratio, indicating a growing imbalance of amount of cyclically caved coal, which could impede the coordinated mining and caving operations. Finally it was found that a caving–mining ratio of 1:2.51 should be reasonable for the conditions.
基金supported by the Strategic Priority Research Program-Climate Change: Carbon Budget and Relevant Issues of the Chinese Academy of Sciences (Grant No. XDA05040000)the National Natural Science Foundation of China (Grant Nos. 41005023 and 41275046)
文摘In this study, the authors developed an en- semble of Elman neural networks to forecast the spatial and temporal distribution of fossil-fuel emissions (ff) in 2009. The authors built and trained 29 Elman neural net- works based on the monthly average grid emission data (1979-2008) from different geographical regions. A three-dimensional global chemical transport model, God- dard Earth Observing System (GEOS)-Chem, was applied to verify the effectiveness of the networks. The results showed that the networks captured the annual increasing trend and interannual variation of ff well. The difference between the simulations with the original and predicted ff ranged from -1 ppmv to 1 ppmv globally. Meanwhile, the authors evaluated the observed and simulated north-south gradient of the atmospheric CO2 concentrations near the surface. The two simulated gradients appeared to have a similar changing pattern to the observations, with a slightly higher background CO2 concentration, - 1 ppmv. The results indicate that the Elman neural network is a useful tool for better understanding the spatial and tem- poral distribution of the atmospheric C02 concentration and ft.
基金Projects(50490275, 50621403, 50778184) supported by the National Natural Science Foundation of ChinaProject(NCET-07-0911) supported by Program of New Century Talents of Ministry of EducationProject(CSTC, 2009BA4046) supported by the Natural Science Foundation of CQ CSTC
文摘The three-point bending experiments were applied to investigating effects of loading rates on fracture toughness of Huanglong limestone. The fracture toughness of Huanglong limestone was measured over a wide range of loading rates from 9 × 10-4 to 1.537 MPa.m1/2/s. According to the approximate relationship between static and dynamic fracture toughness of Huanglong limestone, relationship between the growth velocity of crack and dynamic fracture toughness was obtained. The main conclusions are summarized as follows. (1) When the loading rate is higher than 0.027 MPa-ml/2/s, the fracture toughness of Huanglong limestone increases markedly with increasing loading rate. However, when loading rate is lower than 0.027 MPa-ml/2/s, fracture toughness slightly increases with an increase in loading rate. (2) It is found from experimental results that fracture toughness is linearly proportional to the logarithmic expression of loading rate. (3) For Huanglong limestone, when the growth velocity of crack is lower than 100 m/s, the energy release rate slightly decreases with increasing the growth velocity of crack. However, when the growth velocity of crack is higher than 1 000 m/s, the energy release rate dramatically decreases with an increase in the crack growth velocity.
文摘In efforts to overcome an foreseeable energy crisis predicated on limited oil and gas supplies, reserves; economic variations facing the world, and of course the environmental side effects of fossil fuels, an urgent need for energy sources that provide sustainable, safe and economic supplies for the world is imperative. The current fossil fuel energy system must be improved to ensure a better and cleaner transportation future for the world. Despite the fact that the marine transportation sector consumes only 5% of global petroleum production; it is responsible for 15% of the world NOx and SOx emissions. These figures must be the engine that powers the scientific research worldwide to develop new solutions for a very old energy problem. In this paper, the most effective types of marine power plants were discussed. The history of the development of each type was presented first and the technical aspects were discussed second. Also, the fuel ceils as a new type of power plants used in marine sector were briefed to give a complete overview of the past, present and future of the marine power plants development. Based on the increased worldwide concerns regarding harmful emissions, many researchers have introduced solutions to this problem, including the adoption of new cleaner fuels. This paper was guided using the same trend and by implementing the hydrogen as fuel for marine internal combustion engine, gas turbines, and fuel cells.
文摘Syenogranitic dykes in the north of Egypt's Eastern Desert are of geological and economic interest because of the presence of magmatic and supergene enrichment of radioactive mineralization. Zircon crystal morphology within the syenogranitic dykes allows precise definition of sub-alkaline series granites and crystallized at mean temperature of about 637 °C. The growth pattern of the zircons suggest magmatic and hydrothermal origins of radioactive mineralization. Hydrothermal processes are responsible for the formation of significant zircon overgrowth; high U-zircon margins might have occurred contemporaneously with the emplacement of syenogranitic dykes which show anomalous uranium(e U) and thorium(e Th) contents of up to 1386 and 7330 ppm, respectively.Zircon chemistry revealed a relative increase of Hf consistent with decreasing Zr content, suggesting the replacement of Zr by Hf during hydrothermal activity.Visible uranium mineralization is present and recognized by the presence of uranophane and autunite.
基金Project supported by the Federal Research Centre of Kola Science Centre of the Russian Academy of Sciences,Russian。
文摘A plumbomicrolite concentrate(PMC)was leached with the mixture of HF and H2SO4,HF and HNO3 acids,respectively.Optimal conditions ensuring high recovery of tantalum and niobium(up to 99%)into solution,and radionuclides into insoluble residue were determined.Fluoride-sulfuric acid and fluoride-nitric acid schemes were proposed for PMC leaching by an extractive separation of tantalum form niobium,lead and impurities,and production of high-purity tantalum compounds.Octanol-1 was used as an extractant.Optimal conditions for production of high-purity tantalum strip solutions were defined for all stages(extraction-scrubbing-stripping).Produced tantalum compounds,such as tantalum pentoxide and potassium heptafluotanthalate,comply with the norms for high-purity substances in terms of impurities content.Final choice of the PMC processing scheme is determined by its profitability.
文摘China's energy carbon emissions are projected to peak in 2030 with approximately 110% of its 2020 level under the following conditions: 1) China's gross primary energy consumption is 5 Gtce in 2020 and 6 Gtce in 2030; 2) coal's share of the energy consumption is 61% in 2020 and 55% in 2030; 3) non-fossil energy's share increases from 15% in 2020 to 20% in 2030; 4) through 2030, China's GDP grows at an average annual rate of 6%; 5) the annual energy consumption elasticity coefficient is 0.30 in average; and 6) the annual growth rate of energy consumption steadily reduces to within 1%. China's electricity generating capacity would be 1,990 GW, with 8,600 TW h of power generation output in 2020. Of that output 66% would be from coal, 5% from gas, and 29% from non-fossil energy. By 2030, electricity generating capacity would reach 3,170 GW with 11,900 TW h of power generation output. Of that output, 56% would be from coal, 6% from gas, and 37% from non-fossil energy. From 2020 to 2030, CO2 emissions from electric power would relatively fall by 0.2 Gt due to lower coal consumption, and rela- tively fall by nearly 0.3 Gt with the installation of more coal-fired cogeneration units. During 2020--2030, the portion of carbon emissions from electric power in China's energy consumption is projected to increase by 3.4 percentage points. Although the carbon emissions from electric power would keep increasing to 118% of the 2020 level in 2030, the electric power industry would continue to play a decisive role in achieving the goal of increase in non-fossil energy use. This study proposes countermeasures and recommendations to control carbon emissions peak, including energy system optimization, green-coal-fired electricity generation, and demand side management.
基金Supported by the National Natural Science Foundation of China(21336004)the State Key Research Plan of the Ministry of Science and Technology(2013BAC12B03)
文摘The issues of reducing CO_2 emissions, sustainably utilizing natural mineral resources, and dealing with industrial waste offer challenges for sustainable development in energy and the environment. We propose an efficient methodology via the co-reaction of K-feldspar and phosphogypsum for the extraction of soluble potassium salts and recovery of SO_2 with reduced CO_2 emission and energy consumption. The results of characterization and reactivity evaluation indicated that the partial melting of K-feldspar and phosphogypsum in the hightemperature co-reaction significantly facilitated the reduction of phosphogypsum to SO_2 and the exchange of K^+(K-feldspar) with Ca^(2+)(CaSO_4 in phosphogypsum). The reaction parameters were systematically investigated with the highest sulfur recovery ratio of ~ 60% and K extraction ratio of ~ 87.7%. This novel methodology possesses an energy consumption reduction of ~ 28% and CO_2 emission reduction of ~ 55% comparing with the present typical commercial technologies for utilization of K-feldspar and the treatment of phosphogypsum.
文摘The catalytic combustion technology for treating waste gases exiting from wastewater treatment system and oil separators in petrochemical enterprises was introduced in this article. Commercial application of this technology showed that the process "desulfurization and total hydrocarbon concentration homogenizationcatalytic combustion" and the associated WSH-1 combustion catalyst were suitable for treating volatile organic gases emitted from the oil separators, floatation tanks, inlet water-collecting well, waste oil tanks, etc. The commercial unit was equipped with an advanced auto-control system, featuring a simple operation and low energy consumption with good treatment effect. The purified gases could meet the national emission standard.
基金supported by the Pilot Program of University of Liaoning Innovation and Education Reform~~
文摘Dielectric barrier discharge(DBD) plasma is considered to be a promising method to synthesize solid catalysts. In this work, DBD plasma was used to synthesize a nitrogen‐vacancy‐doped g‐C3N4 catalyst in situ for the first time. X‐ray diffraction, N2 adsorption, ultraviolet–visible spectroscopy, scanning electron microscopy, transmission electron microscopy, X‐ray photoelectron spectrosco‐py, electrochemical impedance spectroscopy, electron paramagnetic resonance, O2 tempera‐ture‐programmed desorption, and photoluminescence were used to characterize the obtained cat‐alysts. The photocatalytic H2O2 production ability of the as‐prepared catalyst was investigated. The results show that plasma treatment influences the morphology, structure, and optical properties of the as‐prepared catalyst. Nitrogen vacancies are active centers, which can adsorb reactant oxygen molecules, trap photoelectrons, and promote the transfer of photoelectrons from the catalyst to the adsorbed oxygen molecules for the subsequent reduction reaction. This work provides a new strat‐egy for synthesizing g‐C3N4‐based catalysts.
基金Project supported by CAPES, CNPq and FAPERJ, Brazil
文摘Psidium guajava (guava) leaf is a phytotherapic used in folk medicine to treat gastrointestinal and respiratory dis-turbances and is used as anti-inflammatory medicine. In nuclear medicine, blood constituents (BC) are labelled with techne-tium-99m (99mTc) and used to image procedures. However, data have demonstrated that synthetic or natural drugs could modify the labelling of BC with 99mTc. The aim of this work was to evaluate the effects of aqueous extract of guava leaves on the labelling of BC with 99mTc. Blood samples of Wistar rats were incubated with different concentrations of guava extract and labelled with 99mTc after the percentage of incorporated radioactivity (%ATI) in BC was determined. The results suggest that aqueous guava extract could present antioxidant action and/or alters the membrane structures involved in ion transport into cells, thus decreasing the radiolabelling of BC with 99mTc. The data showed significant (P<0.05) alteration of ATI in BC from blood incubated with guava extract.
基金This work was supported by National Key Technology Supported Program of China (Project 2008BAD95B07, 2011BAD32B03), the China National Natural Science Foundation (Project 31040006).
文摘Plant carbon sequestration is an effective way to abate the global warming. However, the field-scale carbon exchange on a peach orchard remains unclear. Here, using an eddy covariance technique, the net ecosystem carbon dioxide exchange and energy balance were analyzed on a coarse-sand-field, no-tillage, 12-year-old-peach orchard. The results showed that during full flowering, the ability to sequestrate carbon was significant, it reached on the peak of-0.33 mg (CO2) m^-2 s^-1. During rapid growth, the Bowen ratio was under 0.3 and daily net carbon sequestration reached on the peak of-25.1 g (CO2) m^-2 d^-1. During the leaf fall stage, there is a great deal of CO2 emissions, the peak value of carbon sequestration reached +0.60 mg (CO2) m^-2 s^-1. During monitoring period, the daily average of net carbon sequestration and Bowen ratio was 1.22 ± 1.56 and -2.90 ± 6.63 g (CO2) m^-2 d^-1, respectively. The net carbon sequestration could reach -1,052 g (CO2) m^-2 in a year. These results reveal that there is high carbon sequestration on a coarse-sand-field, no-tillage peach orchard.
基金financial supports from the National Natural Science Foundation of China(No.51974063)the Fundamental Research Funds for the Central Universities of China(No.N180104016)the China Postdoctoral Science Foundation(No.2020M670783)。
文摘An innovative technology of high-voltage pulse discharge(HVPD)was proposed to investigate the comminution characteristics of galena ore.The optimal experiment parameters were determined as follows:spark gap spacing of 25 mm,pulse number of 120,and voltage of 25 k V.The mass fraction with size<0.074 mm in ground products was improved by the HVPD.Meanwhile,the relative grindability declined with the increase of the grinding time,which indicated that the superiority of HVPD was weakened.The ground products of HVPD were distributed more homogeneously than those of mechanical crushing.The liberation of breakage products was improved by 24.57%via the HVPD.Moreover,the Brunauer–Emmett–Teller(BET)specific surface area,pore volume,and average pore size were increased via the HVPD.Scanning electron microscopy(SEM)and energy-dispersive X-ray spectroscopy(EDS)analyses suggested that obvious grain-boundary breakage and several stomatal traces were observed in the HVPD products.