In this paper, the changes in temperature and precipitation extremes over the next 20-30 years (2021-2050) in relative to the present day (1986-2005) under the Intergovernmental Panel on Climate Change (IPCC) Special ...In this paper, the changes in temperature and precipitation extremes over the next 20-30 years (2021-2050) in relative to the present day (1986-2005) under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario are analyzed based on a high-resolution climate change simulation performed by a regional climate model (the Abdus Salam International Center for Theoretical Physics (ICTP) RegCM3). The extreme indices of summer days (SU), frost days (FD), and growing season length (GSL) for temperature and simple daily intensity index (SDII), number of days with precipitation ≥10 mm d-1 (R10), and consecutive dry days (CDD) for precipitation are used as the indicators of the extremes. The results show that the indices simulated by RegCM3 in the present day show good agreement with the observed. A general increase in SU, a decrease in FD, and an increase in GSL are found to occur in the next 20-30 years over China. A general increase in SDII, an increase in R10 over western China, and a decrease in R10 in north, northeast, and central China are simulated by the model. Changes in CDD are characterized by a decrease in the north and an increase in the south and the Tibetan Plateau.展开更多
Future changes in the climate regimes over China as measured by the Kppen climate classification are reported in this paper. The analysis is based on a high-resolution climate change simulation conducted by a regional...Future changes in the climate regimes over China as measured by the Kppen climate classification are reported in this paper. The analysis is based on a high-resolution climate change simulation conducted by a regional climate model (the Abdus Salam International Center for Theoretical Physics (ICTP) RegCM3) driven by the global model of Center for Climate System Research (CCSR)/National Institute for Environment Studies (NIES)/Frontier Research Center for Global Change (FRCGC) MIROC3.2_hires (the Model for Interdisciplinary Research on Climate) under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario. Validation of the model performances is presented first. The results show that RegCM3 reproduces the present-day distribution of the Kppen climate types well. Significant changes of the types are found in the future over China, following the simulated warming and precipitation changes. In southern China, the change is characterized by the replacement of subtropical humid (Cr) by subtropical winter-dry (Cw). A pronounced decrease of the cold climate types is found over China, e.g., tundra (Ft) over the Tibetan Plateau and sub-arctic continental (Ec) over northeast China. The changes are usually greater in the end compared with the middle of the 21st century.展开更多
Based on a high-resolution regional climate model (RegCM3) simulation over East Asia, future climate changes over the Miyun Reservoir in the 21st century under the Intergovernmental Panel on Climate Change (IPCC) Spec...Based on a high-resolution regional climate model (RegCM3) simulation over East Asia, future climate changes over the Miyun Reservoir in the 21st century under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario are analyzed. The model simulation extends from 1951 to 2100 at a grid spacing of 25 km and is one-way nested within a global model of MIROC3.2_ hires (the Model for Interdisciplinary Research on Climate). The focus of the analysis is on the Watershed of Miyun Reservoir, the main water supply for Beijing in northern China. The results show that RegCM3 reproduces the observed temperature well but it overestimates precipitation over the region. Significant warming in the 21st century is simulated in the annual mean, December-January-February (DJF) and June-July-August (JJA), although with differences concerning the spatial distribution and magnitude. Changes in precipitation for the annual mean, DJF, and JJA also show differences. A prevailing increase of precipitation in DJF and a decrease of it in JJA is projected over the region, while little change in the annual mean is projected. Changes of the difference between precipitation and evapotranspiration to measure the potential water availability are also presented in the paper.展开更多
The contributions of carbon reduction policies were evaluated and compared for six carbon trading pilot schemes in China, in four municipalities(Beijing, Shanghai, Tianjin, and Chongqing) and two provinces(Guangdong a...The contributions of carbon reduction policies were evaluated and compared for six carbon trading pilot schemes in China, in four municipalities(Beijing, Shanghai, Tianjin, and Chongqing) and two provinces(Guangdong and Hubei). The carbon emissions accounting method of the Intergovernmental Panel on Climate Change was used to calculate the actual CO2 and the support vector machine model was used to predict CO2. Chinese carbon reduction policies abated CO2 in the six carbon trading pilot schemes after the comprehensive policies came into force. However, the contribution of policies to CO2 abatement varied among regions, and the effect of carbon reduction policy on municipality pilot schemes was greater than on provincial pilot schemes. The largest contribution of carbon reduction policy to CO2 abatement was 28.3%, for the pilot carbon trading scheme in Beijing, and the smallest contribution was 3.7%, for that in Hubei. It is crucial to consider "carbon leakage" and a carbon trading linking program in order to evaluate the effects of carbon reduction policies.展开更多
Assessment report of the Intergovernmental Panel on Climate Change (IPCC) highlighted the complex linkages between climate change and water. The likely warmer climate induced by the climate change is set to alter hy...Assessment report of the Intergovernmental Panel on Climate Change (IPCC) highlighted the complex linkages between climate change and water. The likely warmer climate induced by the climate change is set to alter hydrological cycle and the shifting pattern of the rainfall would affect the spatial and temporal distribution of runoff, soil moisture, and surface and groundwater reserves. Therefore, there is an urgent need to assess the impacts of climate change on water and devise adaptation measures including management structures and processes by which one can deal with this challenge. The paper highlights with the global overview of climate change impacts on water in the arid region, supported and substantiated through scientific evidence drawn from IPCC reports and other relevant documents. This paper provides an overview of water resource management challenges including transboundary geopolitical concerns documented across the world and emphasizes the importance of an integrated framework for adaptive policy making. Further, it examines the viable water resource management options for various sectors and regions and showcases some of the international best practices in adaptation and mitigation. The paper also explains the complementary role of traditional knowledge in coping with climate change risks and uncertainties and the need for a balanced view in designing adaptation and mitigation strategies.展开更多
Developing countries as Mexico lack their own emission factors for thermoelectric power plants, so they have the need to develop them, considering specific operation conditions for each plant. This study develops spec...Developing countries as Mexico lack their own emission factors for thermoelectric power plants, so they have the need to develop them, considering specific operation conditions for each plant. This study develops specific emission factors in Mexico for: sulfur dioxide (SO2), nitrogen oxides (NOx) and particles, for thermoelectric power plants that use fuel oil. This work was necessary due to the differences found between the measured and the calculated emissions, using emission factors of different agencies, such as, US-EPA (Environmental Protection Agency of the United States), IPCC (Intergovernmental Panel on Climate Change), and UK-NAEI (National Atmospheric Emissions Inventory of the United Kingdom). The new emission factors were used to calculate the emissions of a thermoelectric power plant in Mexico. The comparisons between the measured and the calculated emissions (with the new emission factors) for 502, particles and NO2 were not significantly different (p 〉 0.05).展开更多
Simulations of the Regional Climate Model Version 3 (RegCM3) under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario were employed to investigate possible d...Simulations of the Regional Climate Model Version 3 (RegCM3) under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario were employed to investigate possible decadal changes and long-term trends of annual mean atmospheric water balance components over China in the 21st century with reference to the period of 1981-2000. An evaluation showed that RegCM3 can reasonably reproduce annual evapotranspiration, precipitation, and water vapor transport over China, with a better performance for March-June. It was found that the water vapor exchange between the land surface and atmosphere would be significantly intensified in Northwest China by the mid-to late-21st century and that the region would possibly shift to a wetter or drought-mitigated state under global warming. Conversely, the water vapor exchange evidently weakened over the Tibetan Plateau and South-west China by the mid-to late-21st century. In addition, there appears to be a drier state for Northeast China and the middle and lower reaches of the Yangtze River valley by the mid-to late-21st century, with slight mitigation by the end compared with the mid-21st century. The westerly and southwesterly water vapor transport over China generally presents an increasing trend, with increasing diver-gence over the Tibetan Plateau and Northeast China, corresponding to a loss of atmospheric water vapor by water vapor transport.展开更多
Burning crop residues and excessive use of chemical fertilizers results in an enormous waste of bio- logical resources, which further weakens the potential capacity of the agro-ecosystem as a carbon sink. To explore t...Burning crop residues and excessive use of chemical fertilizers results in an enormous waste of bio- logical resources, which further weakens the potential capacity of the agro-ecosystem as a carbon sink. To explore the potential of farmlands acting as a carbon sink without yield losses, we conducted an experiment on a temperate eco-farm in eastern rural China. Crop residues were applied to cattle feed, and the composted cattle manure was returned to cropland with a winter wheat and maize rotation. Four different proportions of fertilizers were designed: 100 % cattle manure, 100 % mineral nitrogen, 75 % cattle manure plus 25 % mineral nitrogen, and 50 % cattle manure plus 50 % mineral nitrogen. Crop yield and greenhouse gas (GHG) emissions were carefully calculated according to the Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Green- house Gas Inventories 2006. Our results showed that replacing chemical fertilizer with organic manure signifi- cantly decreased the emission of GHGs. Yields of wheat and corn also increased as the soil fertility was improved by the application of cattle manure. Totally replacing chemical fertilizer with organic manure decreased GHG emissions, which reversed the agriculture ecosystem from a carbon source (+2.7 t CO_2-eq. hm-2 year-1) to a carbon sink (-8.8 t CO_2-eq. hm^-2 year^-1). Our findings provide useful insights for improving agricultural ecosystems under global change scenarios.展开更多
The Fourth Assessment Report (AR4) of the Intergovernmental Panel of Climate Change (IPCC) concluded that the climate projection using climate models that took account of both human and natural factors provided credib...The Fourth Assessment Report (AR4) of the Intergovernmental Panel of Climate Change (IPCC) concluded that the climate projection using climate models that took account of both human and natural factors provided credible quantitative estimates of future climate change; however, the mismatches between the IPCC AR4 model ensembles and the observations, especially the multi-decadal variability (MDV), have cast shadows on the confidence of the model-based decadal projections of future cli mate. This paper reports an evaluation of many individual runs of AR4 models in the simulation of past global mean tempera ture. We find that most of the individual model runs fail to reproduce the MDV of past climate, which may have led to the overestimation of the projection of global warming for the next 40 years or so. Based on such an evaluation, we propose an al ternative approach, in which the MDV signal is taken into account, to project the global mean temperature for the next 40 years and obtain that the global warming during 2011–2050 could be much smaller than the AR4 projection.展开更多
Five General Circulation Model(GCM) climate projections under the RCP8.5 emission scenario were used to drive the Variable Infiltration Capacity(VIC) hydrologic model to investigate the impacts of climate change on hy...Five General Circulation Model(GCM) climate projections under the RCP8.5 emission scenario were used to drive the Variable Infiltration Capacity(VIC) hydrologic model to investigate the impacts of climate change on hydrologic cycle over continental China in the 21 st century. The bias-corrected climatic variables were generated for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change(IPCC AR5) by the Inter-Sectoral Impact Model Intercomparison Project(ISIMIP). Results showed much larger fractional changes of annual mean Evapotranspiration(ET) per unit warming than the corresponding fractional changes of Precipitation(P) per unit warming across the country, especially for South China, which led to a notable decrease of surface water variability(P-E). Specifically, negative trends for annual mean runoff up to -0.33%/ year and soil moisture trends varying between -0.02% to -0.13%/year were found for most river basins across China. Coincidentally, interannual variability for both runoff and soil moisture exhibited significant positive trends for almost all river basins across China, implying an increase in extremes relative to the mean conditions. Noticeably, the largest positive trends for runoff variability and soil moisture variability, which were up to 0.41%/year and 0.90%/year, both occurred in Southwest China. In addition to the regional contrast, intra-seasonal variation was also large for the runoff mean and runoff variability changes, but small for the soil moisture mean and variability changes. Our results suggest that future climate change could further exacerbate existing water-related risks(e.g., floods and droughts) across China as indicated by the marked decrease of surface water amounts combined with a steady increase of interannual variability throughout the 21 st century. This study highlights the regional contrast and intra-seasonal variations for the projected hydrologic changes and could provide a multi-scale guidance for assessing effective adaptation strategies for China on a river basin, regional, or as a whole.展开更多
基金supported by the National Basic Research Program of China(Grant No.2009CB421407)the China-UK-Swiss Adapting to Climate Change in China Project (ACCC)-Climate Science
文摘In this paper, the changes in temperature and precipitation extremes over the next 20-30 years (2021-2050) in relative to the present day (1986-2005) under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario are analyzed based on a high-resolution climate change simulation performed by a regional climate model (the Abdus Salam International Center for Theoretical Physics (ICTP) RegCM3). The extreme indices of summer days (SU), frost days (FD), and growing season length (GSL) for temperature and simple daily intensity index (SDII), number of days with precipitation ≥10 mm d-1 (R10), and consecutive dry days (CDD) for precipitation are used as the indicators of the extremes. The results show that the indices simulated by RegCM3 in the present day show good agreement with the observed. A general increase in SU, a decrease in FD, and an increase in GSL are found to occur in the next 20-30 years over China. A general increase in SDII, an increase in R10 over western China, and a decrease in R10 in north, northeast, and central China are simulated by the model. Changes in CDD are characterized by a decrease in the north and an increase in the south and the Tibetan Plateau.
基金supported by the Special Research Program for Public-Welfare Forestry(Grant No.200804001)the National Basic Research Program of China(Grant No.2009CB421407)
文摘Future changes in the climate regimes over China as measured by the Kppen climate classification are reported in this paper. The analysis is based on a high-resolution climate change simulation conducted by a regional climate model (the Abdus Salam International Center for Theoretical Physics (ICTP) RegCM3) driven by the global model of Center for Climate System Research (CCSR)/National Institute for Environment Studies (NIES)/Frontier Research Center for Global Change (FRCGC) MIROC3.2_hires (the Model for Interdisciplinary Research on Climate) under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario. Validation of the model performances is presented first. The results show that RegCM3 reproduces the present-day distribution of the Kppen climate types well. Significant changes of the types are found in the future over China, following the simulated warming and precipitation changes. In southern China, the change is characterized by the replacement of subtropical humid (Cr) by subtropical winter-dry (Cw). A pronounced decrease of the cold climate types is found over China, e.g., tundra (Ft) over the Tibetan Plateau and sub-arctic continental (Ec) over northeast China. The changes are usually greater in the end compared with the middle of the 21st century.
基金supported by the National Natural Science Foundation of China under Grant 40975041the National Basic Research Program of China under Grant 2009CB421407
文摘Based on a high-resolution regional climate model (RegCM3) simulation over East Asia, future climate changes over the Miyun Reservoir in the 21st century under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario are analyzed. The model simulation extends from 1951 to 2100 at a grid spacing of 25 km and is one-way nested within a global model of MIROC3.2_ hires (the Model for Interdisciplinary Research on Climate). The focus of the analysis is on the Watershed of Miyun Reservoir, the main water supply for Beijing in northern China. The results show that RegCM3 reproduces the observed temperature well but it overestimates precipitation over the region. Significant warming in the 21st century is simulated in the annual mean, December-January-February (DJF) and June-July-August (JJA), although with differences concerning the spatial distribution and magnitude. Changes in precipitation for the annual mean, DJF, and JJA also show differences. A prevailing increase of precipitation in DJF and a decrease of it in JJA is projected over the region, while little change in the annual mean is projected. Changes of the difference between precipitation and evapotranspiration to measure the potential water availability are also presented in the paper.
基金jointly supported by the National Basic Research Program of China(Grant No.2012CB9557001)the National Natural Science Foundation of China(Grant No.41175125)
文摘The contributions of carbon reduction policies were evaluated and compared for six carbon trading pilot schemes in China, in four municipalities(Beijing, Shanghai, Tianjin, and Chongqing) and two provinces(Guangdong and Hubei). The carbon emissions accounting method of the Intergovernmental Panel on Climate Change was used to calculate the actual CO2 and the support vector machine model was used to predict CO2. Chinese carbon reduction policies abated CO2 in the six carbon trading pilot schemes after the comprehensive policies came into force. However, the contribution of policies to CO2 abatement varied among regions, and the effect of carbon reduction policy on municipality pilot schemes was greater than on provincial pilot schemes. The largest contribution of carbon reduction policy to CO2 abatement was 28.3%, for the pilot carbon trading scheme in Beijing, and the smallest contribution was 3.7%, for that in Hubei. It is crucial to consider "carbon leakage" and a carbon trading linking program in order to evaluate the effects of carbon reduction policies.
文摘Assessment report of the Intergovernmental Panel on Climate Change (IPCC) highlighted the complex linkages between climate change and water. The likely warmer climate induced by the climate change is set to alter hydrological cycle and the shifting pattern of the rainfall would affect the spatial and temporal distribution of runoff, soil moisture, and surface and groundwater reserves. Therefore, there is an urgent need to assess the impacts of climate change on water and devise adaptation measures including management structures and processes by which one can deal with this challenge. The paper highlights with the global overview of climate change impacts on water in the arid region, supported and substantiated through scientific evidence drawn from IPCC reports and other relevant documents. This paper provides an overview of water resource management challenges including transboundary geopolitical concerns documented across the world and emphasizes the importance of an integrated framework for adaptive policy making. Further, it examines the viable water resource management options for various sectors and regions and showcases some of the international best practices in adaptation and mitigation. The paper also explains the complementary role of traditional knowledge in coping with climate change risks and uncertainties and the need for a balanced view in designing adaptation and mitigation strategies.
文摘Developing countries as Mexico lack their own emission factors for thermoelectric power plants, so they have the need to develop them, considering specific operation conditions for each plant. This study develops specific emission factors in Mexico for: sulfur dioxide (SO2), nitrogen oxides (NOx) and particles, for thermoelectric power plants that use fuel oil. This work was necessary due to the differences found between the measured and the calculated emissions, using emission factors of different agencies, such as, US-EPA (Environmental Protection Agency of the United States), IPCC (Intergovernmental Panel on Climate Change), and UK-NAEI (National Atmospheric Emissions Inventory of the United Kingdom). The new emission factors were used to calculate the emissions of a thermoelectric power plant in Mexico. The comparisons between the measured and the calculated emissions (with the new emission factors) for 502, particles and NO2 were not significantly different (p 〉 0.05).
基金supported by the Major State Basic Research Development Program of China(973 Program,Grant No.2009CB421406)the National Natural Science Foundation of China(Grant No.41130103)
文摘Simulations of the Regional Climate Model Version 3 (RegCM3) under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario were employed to investigate possible decadal changes and long-term trends of annual mean atmospheric water balance components over China in the 21st century with reference to the period of 1981-2000. An evaluation showed that RegCM3 can reasonably reproduce annual evapotranspiration, precipitation, and water vapor transport over China, with a better performance for March-June. It was found that the water vapor exchange between the land surface and atmosphere would be significantly intensified in Northwest China by the mid-to late-21st century and that the region would possibly shift to a wetter or drought-mitigated state under global warming. Conversely, the water vapor exchange evidently weakened over the Tibetan Plateau and South-west China by the mid-to late-21st century. In addition, there appears to be a drier state for Northeast China and the middle and lower reaches of the Yangtze River valley by the mid-to late-21st century, with slight mitigation by the end compared with the mid-21st century. The westerly and southwesterly water vapor transport over China generally presents an increasing trend, with increasing diver-gence over the Tibetan Plateau and Northeast China, corresponding to a loss of atmospheric water vapor by water vapor transport.
基金jointly supported by the Key Strategic Project of the Chinese Academy of Sciences(KSZD-EW-Z-012-2)the National Science and Technology Support Program(2012BAD14B00)
文摘Burning crop residues and excessive use of chemical fertilizers results in an enormous waste of bio- logical resources, which further weakens the potential capacity of the agro-ecosystem as a carbon sink. To explore the potential of farmlands acting as a carbon sink without yield losses, we conducted an experiment on a temperate eco-farm in eastern rural China. Crop residues were applied to cattle feed, and the composted cattle manure was returned to cropland with a winter wheat and maize rotation. Four different proportions of fertilizers were designed: 100 % cattle manure, 100 % mineral nitrogen, 75 % cattle manure plus 25 % mineral nitrogen, and 50 % cattle manure plus 50 % mineral nitrogen. Crop yield and greenhouse gas (GHG) emissions were carefully calculated according to the Intergovernmental Panel on Climate Change (IPCC) Guidelines for National Green- house Gas Inventories 2006. Our results showed that replacing chemical fertilizer with organic manure signifi- cantly decreased the emission of GHGs. Yields of wheat and corn also increased as the soil fertility was improved by the application of cattle manure. Totally replacing chemical fertilizer with organic manure decreased GHG emissions, which reversed the agriculture ecosystem from a carbon source (+2.7 t CO_2-eq. hm-2 year-1) to a carbon sink (-8.8 t CO_2-eq. hm^-2 year^-1). Our findings provide useful insights for improving agricultural ecosystems under global change scenarios.
基金supported by the National Basic Research Program of Chi-na (Grant No. 2011CB952000)the National Natural Science Founda-tion of China (Grant No. 40810059003)+1 种基金Qian Cheng was partly supported by the "Strategic Priority Research Program" of the Chinese Academy of Sciences (Grant No. XDA05090103)Wu Zhaohua was supported by the Natural Science Foundation of USA (Grant No. ATM-0917743)
文摘The Fourth Assessment Report (AR4) of the Intergovernmental Panel of Climate Change (IPCC) concluded that the climate projection using climate models that took account of both human and natural factors provided credible quantitative estimates of future climate change; however, the mismatches between the IPCC AR4 model ensembles and the observations, especially the multi-decadal variability (MDV), have cast shadows on the confidence of the model-based decadal projections of future cli mate. This paper reports an evaluation of many individual runs of AR4 models in the simulation of past global mean tempera ture. We find that most of the individual model runs fail to reproduce the MDV of past climate, which may have led to the overestimation of the projection of global warming for the next 40 years or so. Based on such an evaluation, we propose an al ternative approach, in which the MDV signal is taken into account, to project the global mean temperature for the next 40 years and obtain that the global warming during 2011–2050 could be much smaller than the AR4 projection.
基金supported by the National Natural Science Foundation of China(Grant No.41171031)National Basic Research Program of China(Grant No.2012CB955403)+3 种基金Hundred Talents Program of the Chinese Academy of Sciences conducted under the framework of ISI-MIPThe ISIMIP Fast Track Project was funded by the German Federal Ministry of Education and Research(BMBF)(Grant No.01LS1201A)supported by Office of Science of the U.S.Department of Energy through the Regional and Global Climate Modeling ProgramPNNL is operated for the US DOE by Battelle Memorial Institute(Grant No.DE-AC05-76RL01830)
文摘Five General Circulation Model(GCM) climate projections under the RCP8.5 emission scenario were used to drive the Variable Infiltration Capacity(VIC) hydrologic model to investigate the impacts of climate change on hydrologic cycle over continental China in the 21 st century. The bias-corrected climatic variables were generated for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change(IPCC AR5) by the Inter-Sectoral Impact Model Intercomparison Project(ISIMIP). Results showed much larger fractional changes of annual mean Evapotranspiration(ET) per unit warming than the corresponding fractional changes of Precipitation(P) per unit warming across the country, especially for South China, which led to a notable decrease of surface water variability(P-E). Specifically, negative trends for annual mean runoff up to -0.33%/ year and soil moisture trends varying between -0.02% to -0.13%/year were found for most river basins across China. Coincidentally, interannual variability for both runoff and soil moisture exhibited significant positive trends for almost all river basins across China, implying an increase in extremes relative to the mean conditions. Noticeably, the largest positive trends for runoff variability and soil moisture variability, which were up to 0.41%/year and 0.90%/year, both occurred in Southwest China. In addition to the regional contrast, intra-seasonal variation was also large for the runoff mean and runoff variability changes, but small for the soil moisture mean and variability changes. Our results suggest that future climate change could further exacerbate existing water-related risks(e.g., floods and droughts) across China as indicated by the marked decrease of surface water amounts combined with a steady increase of interannual variability throughout the 21 st century. This study highlights the regional contrast and intra-seasonal variations for the projected hydrologic changes and could provide a multi-scale guidance for assessing effective adaptation strategies for China on a river basin, regional, or as a whole.