In order to improve crash occurrence models to account for the influence of various contributing factors, a conditional autoregressive negative binomial (CAR-NB) model is employed to allow for overdispersion (tackl...In order to improve crash occurrence models to account for the influence of various contributing factors, a conditional autoregressive negative binomial (CAR-NB) model is employed to allow for overdispersion (tackled by the NB component), unobserved heterogeneity and spatial autocorrelation (captured by the CAR process), using Markov chain Monte Carlo methods and the Gibbs sampler. Statistical tests suggest that the CAR-NB model is preferred over the CAR-Poisson, NB, zero-inflated Poisson, zero-inflated NB models, due to its lower prediction errors and more robust parameter inference. The study results show that crash frequency and fatalities are positively associated with the number of lanes, curve length, annual average daily traffic (AADT) per lane, as well as rainfall. Speed limit and the distances to the nearest hospitals have negative associations with segment-based crash counts but positive associations with fatality counts, presumably as a result of worsened collision impacts at higher speed and time loss during transporting crash victims.展开更多
In today's aircraft,the hardware redundancy is driven by the critical surfaces resulting in single point-failures.Reconfiguration technology remoVes the single surface criticality by employing control surfaces wit...In today's aircraft,the hardware redundancy is driven by the critical surfaces resulting in single point-failures.Reconfiguration technology remoVes the single surface criticality by employing control surfaces with aerodynamic redundancy.This paper studies a control reconfiguration scheme based on Control Mixer Concept.A technique for the design of a control mixer for an aircraft with damaged surfaces/actuators using the pseudo-inverse is developed and applied.This paper discusses its applications and limitations based on linear analysis and computer simulation.展开更多
A new integrity metric for navigation systems is proposed based on the measurement domain. Proba-hilistic optimization design offers tools for fault detection by considering the required navigation performance (RNP)...A new integrity metric for navigation systems is proposed based on the measurement domain. Proba-hilistic optimization design offers tools for fault detection by considering the required navigation performance (RNP) parameter and the uncertainty noise. The choice of the proper performance parameter provided the single-valued mapping with the missed detection probability estimates the probability of failure. The desirable characteristics of the residual sensitivity matrix are exploited to increase the efficiency for identifying erroneous observations. The algorithm can be used to support the performance specification and the efficient calculation of the integrity monitoring process. The simulation for non-precision approach (NPA) validates both the viability and the effectiveness of the proposed algorithm.展开更多
Advanced driver-assistance systems such as Honda’s collision mitigation brake system(CMBS)can help achieve traffic safety.In this paper,the naturalistic driving study and a series of simulations are combined to bette...Advanced driver-assistance systems such as Honda’s collision mitigation brake system(CMBS)can help achieve traffic safety.In this paper,the naturalistic driving study and a series of simulations are combined to better evaluate the performance of the CMBS in the Chinese traffic environment.First,because safety-critical situations can be diverse especially in the Chinese environment,the Chinese traffic-accident characteristics are analyzed according to accident statistics over the past 17 years.Next,10 Chinese traffic-accident scenarios accounting for more than 80%of traffic accidents are selected.For each typical scenario,353 representative cases are collected from the traffic-management department of Beijing.These real-world accident cases are then reconstructed by the traffic-accident-reconstruction software PC-Crash on the basis of accident-scene diagrams.This study also proposes a systematic analytical process for estimating the effectiveness of the technology using the co-simulation platform of PC-Crash and rateEFFECT,in which 176 simulations are analyzed in detail to assess the accident-avoidance performance of the CMBS.The overall collision-avoidance effectiveness reaches 82.4%,showing that the proposed approach is efficient for avoiding collisions,thereby enhancing traffic safety and improving traffic management.展开更多
Based on fault diagnosis and fault tolerant technologies, the mine-hoist active fault-tolerant control system (MAFCS) is presented with corresponding strategies,, which includes the fault diagnosis module (FDM), the d...Based on fault diagnosis and fault tolerant technologies, the mine-hoist active fault-tolerant control system (MAFCS) is presented with corresponding strategies,, which includes the fault diagnosis module (FDM), the dynamic library (DL) and the fault-tolerant control module (FCM). When a fault is judged from some sensor by FDM, FCM reconfigure the state of MAFCS by calling the parameters from all sub libraries in DL, in order to ensure the reliabil- ity and safety of mine hoist. The simulating result shows that, MAFCS is of certain intelligence, which can adopt the corresponding control strategies according to different fault modes, even when there are quite difference between the real data and the prior fault modes.展开更多
A method combining information entropy and radial basis function network is proposed for fault automatic diagnosis of reciprocating compressors.Aiming at the current situation that the accuracy rate of reciprocating c...A method combining information entropy and radial basis function network is proposed for fault automatic diagnosis of reciprocating compressors.Aiming at the current situation that the accuracy rate of reciprocating compressor fault diagnosis which depends on manual work in engineering is very low,we apply information entropy evaluation to select the sensitive features and make clear the corresponding relationship of characteristic parameters and failures.This method could reduce the feature dimension.Then,a complete fault diagnosis architecture has been built combining with radial basis function network which has the fast and efficient characteristics.According to the test results using experimental and engineering data,it is observed that the proposed fault diagnosis method improves the accuracy of fault automatic diagnosis effectively and it could improve the practicability of the monitoring system.展开更多
Autonomous underwater vehicles(AUV) work in a complex marine environment. Its system reliability and autonomous fault diagnosis are particularly important and can provide the basis for underwater vehicles to take corr...Autonomous underwater vehicles(AUV) work in a complex marine environment. Its system reliability and autonomous fault diagnosis are particularly important and can provide the basis for underwater vehicles to take corresponding security policy in a failure. Aiming at the characteristics of the underwater vehicle which has uncertain system and modeling difficulty, an improved Elman neural network is introduced which is applied to the underwater vehicle motion modeling. Through designing self-feedback connection with fixed gain in the unit connection as well as increasing the feedback of the output layer node, improved Elman network has faster convergence speed and generalization ability. This method for high-order nonlinear system has stronger identification ability. Firstly, the residual is calculated by comparing the output of the underwater vehicle model(estimation in the motion state) with the actual measured values. Secondly, characteristics of the residual are analyzed on the basis of fault judging criteria. Finally, actuator fault diagnosis of the autonomous underwater vehicle is carried out. The results of the simulation experiment show that the method is effective.展开更多
Radio block center(RBC)system is the core equipment of China train control system-3(CTCS-3).Now,the fault analysis of RBC system mainly depends on manual work,and the diagnostic results are inaccurate and inefficient....Radio block center(RBC)system is the core equipment of China train control system-3(CTCS-3).Now,the fault analysis of RBC system mainly depends on manual work,and the diagnostic results are inaccurate and inefficient.Therefore,the intelligent fault diagnosis method of RBC system based on one-hot model,kernel principal component analysis(KPCA)and self-organizing map(SOM)network was proposed.Firstly,the fault document matrix based on one-hot model was constructed by the fault feature lexicon selected manually and fault tracking record table.Secondly,the KPCA method was used to reduce the dimension and noise of the fault document matrix to avoid information redundancy.Finally,the processed data were input into the SOM network to train the KPCA-SOM fault classification model.Compared with back propagation(BP)neural network algorithm and SOM network algorithm,common fault patterns of train control RBC system can be effectively distinguished by KPCA-SOM intelligent diagnosis model,and the accuracy and processing efficiency are further improved.展开更多
To solve the fault diagnosis problem of liquid propellant rocket engine ground testing bed,a fault diagnosis approach based on self-organizing map(SOM)is proposed.The SOM projects the multidimensional ground testing b...To solve the fault diagnosis problem of liquid propellant rocket engine ground testing bed,a fault diagnosis approach based on self-organizing map(SOM)is proposed.The SOM projects the multidimensional ground testing bed data into a two-dimensional map.Visualization of the SOM is used to cluster the ground testing bed data.The out map of the SOM is divided to several regions.Each region is represented for one fault mode.The fault mode of testing data is determined according to the region of their labels belonged to.The method is evaluated using the testing data of a liquid-propellant rocket engine ground testing bed with sixteen fault states.The results show that it is a reliable and effective method for fault diagnosis with good visualization property.展开更多
In chemical process, a large number of measured and manipulated variables are highly correlated. Principal component analysis(PCA) is widely applied as a dimension reduction technique for capturing strong correlation ...In chemical process, a large number of measured and manipulated variables are highly correlated. Principal component analysis(PCA) is widely applied as a dimension reduction technique for capturing strong correlation underlying in the process measurements. However, it is difficult for PCA based fault detection results to be interpreted physically and to provide support for isolation. Some approaches incorporating process knowledge are developed, but the information is always shortage and deficient in practice. Therefore, this work proposes an adaptive partitioning PCA algorithm entirely based on operation data. The process feature space is partitioned into several sub-feature spaces. Constructed sub-block models can not only reflect the local behavior of process change, namely to grasp the intrinsic local information underlying the process changes, but also improve the fault detection and isolation through the combination of local fault detection results and reduction of smearing effect.The method is demonstrated in TE process, and the results show that the new method is much better in fault detection and isolation compared to conventional PCA method.展开更多
Objectives:The purpose of the study was to investigate the nursing students'levels of the knowledge,willingness,and attitudes toward first aid behavior as bystanders in road traffic accident and the related factor...Objectives:The purpose of the study was to investigate the nursing students'levels of the knowledge,willingness,and attitudes toward first aid behavior as bystanders in road traffic accident and the related factors.Methods:A total of 475 nursing students were recruited by convenience choosing in Tianjin University of Traditional Chinese Medicine.The nursing students'self-efficacy,core self-evaluation,knowledge,willingness and attitudes toward first aid behavior as bystanders in traffic accidents were investigated with a self-designed questionnaire.Results:The scores of knowledge,willingness,and attitudes toward first aid behavior in traffic accident trauma were 7.51±1.93,15.54±5.03,and 7.73±1.56,respectively.Students who once gained training of first aid showed lower levels of attitude toward first aid behavior than those untrained(t=-2.345,P=0.019).It was found that self-efficacy was correlated to the knowledge(r=0.150,P<0.001),willingness(r=0.182,P<0.004)and attitudes toward behavior of the first aid(r=0.371,P<0.001)among nursing students.Core self-evaluation was correlated to knowledge(r=0.193,P<0.001)and attitudes toward behavior of the first aid(r=0.199,P<0.001).Conclusions:The first aid knowledge among nursing students was not satisfactory.The study suggested that an unsustainable short first-aid training program may bring negative effects.Countermeasures should be taken to ensure both quality and continuity of first aid training.Meanwhile,more attention should be paid to improving the self-efficacy and core self-evaluation of the nursing students.展开更多
In order to analyze the risky factors that affect vehicle-cyclist crash injury severity at the intersection area,especially the factors relating to the road users behaviors,an empirical study was conducted by collecti...In order to analyze the risky factors that affect vehicle-cyclist crash injury severity at the intersection area,especially the factors relating to the road users behaviors,an empirical study was conducted by collecting accident records from 2011 to 2015 from the General Estimates System.After preliminary screening,the variables were classified into 5 main categories including cyclists characteristic and behavior,drivers characteristic and behavior,vehicle characteristic,intersection condition,and time.The random parameter ordinal probit(RPOP)was used to study the significant influencing factors and corresponding heterogeneity.The results show that failing to obey traffic signals,failing to yield to right-of-way,dash and drinking before cycling can increase the injury severity for cyclists,and the corresponding fatal injury likelihoods increase by 53.2%,40.0%,86.3%,and 211.5%,respectively.Moreover,drivers inattention,speeding,going straight and left turning increase the risk of crashing for cyclists.The corresponding fatal injury likelihoods increase by 134.5%,186.5%,69.3%,and 22.7%,respectively.Other indicators such as age,gender,vehicle type,traffic signal and intersection type can also affect injury severity.展开更多
At present,ZPW-2000 track circuit fault diagnosis is artificially analyzed and monitored.Its discrimination method not only is low efficient and takes a long period,but also requires highly experienced personnel to an...At present,ZPW-2000 track circuit fault diagnosis is artificially analyzed and monitored.Its discrimination method not only is low efficient and takes a long period,but also requires highly experienced personnel to analyze the data.Therefore,we introduce kernel principal component analysis and stacked auto-encoder network(KPCA-SAD)into the fault diagnosis of ZPW-2000 track circuit.According to the working principle and fault characteristics of track circuit,a fault diagnosis model of KPCA-SAE network is established.The relevant parameters of key components recorded in the data collected by field staff are used as the fault feature parameters.The KPCA method is used to reduce the dimension and noise of fault document matrix to avoid information redundancy.The SAE network is trained by the processed fault data.The model parameters are optimized overall by using back propagation(BP)algorithm.The KPCA-SAE model is simulated in Matlab platform and is finally proved to be effective and feasible.Compared with the traditional method of artificially analyzing fault data and other intelligent algorithms,the KPCA-SAE based classifier has higher fault identification accuracy.展开更多
Fault diagnosis and monitoring are very important for complex chemical process. There are numerous methods that have been studied in this field, in which the effective visualization method is still challenging. In ord...Fault diagnosis and monitoring are very important for complex chemical process. There are numerous methods that have been studied in this field, in which the effective visualization method is still challenging. In order to get a better visualization effect, a novel fault diagnosis method which combines self-organizing map (SOM) with Fisher discriminant analysis (FDA) is proposed. FDA can reduce the dimension of the data in terms of maximizing the separability of the classes. After feature extraction by FDA, SOM can distinguish the different states on the output map clearly and it can also be employed to monitor abnormal states. Tennessee Eastman (TE) process is employed to illustrate the fault diagnosis and monitoring performance of the proposed method. The result shows that the SOM integrated with FDA method is efficient and capable for real-time monitoring and fault diagnosis in complex chemical process.展开更多
The interpretation of The Story of an Hour has been a heated topic in literature study. Many people believeitcriticizes the oppressionon female from male society. However, this paper holds that, from the perspective o...The interpretation of The Story of an Hour has been a heated topic in literature study. Many people believeitcriticizes the oppressionon female from male society. However, this paper holds that, from the perspective of New Criticism, a work should be interpreted based on the text.Therefore,thispapersuggests the story is about the confusion between freedom and fetter and deals with the subtle and complicated living status of human being.展开更多
Due to its great potentisl value in theory and application, fault-tolerant control atrategies of nonlinear systems, especially combining with intelligent control methods, have been a focus in the academe. A fault-tole...Due to its great potentisl value in theory and application, fault-tolerant control atrategies of nonlinear systems, especially combining with intelligent control methods, have been a focus in the academe. A fault-tolerant control method based on fuzzy neural networks was presented for nonlinear systems in this paper. The fault parameters were designed to detect the fault, adaptive updating method was introduced to estimate and track fault, and fuzzy neural networks were used to adjust the fault parameters and construct automated fault diagnosis. And the fault compeusation control force, which was given by fault estimation, was used to realize adaptive fault-tolerant control. This framework leaded to a simple structure, an accurate detection, and a high robusmess. The simulation results in induction motor show that it is still able to work well with high dynamic performance and control precision under the condition of motor parameters' variation fault and load torque disturbance.展开更多
Presents a novel approach for the sensor fault diagnosis of time-delay systems by using an adaptive observer technique. The sensor tault is modeled as an additive perturbation described by a time varying function. Sys...Presents a novel approach for the sensor fault diagnosis of time-delay systems by using an adaptive observer technique. The sensor tault is modeled as an additive perturbation described by a time varying function. Systems without model uncertainty are initially considered, followed by a discussion of a general situation where the system is subjected to either model uncertainty or external disturbance. An adaptive diagnostic algorithm is developed to diagnose the fault, and a modified version is proposed for general system to improve robusiness. The stability of fault diagnosis system is proved. Finally, a numerical example is given to illustrate the efficiency of the proposed method.展开更多
Considering the deficiency of the means for confirming the attribution of fault redundancy in the re-search of Automatic Testing System(ATS) , a fault-injection system has been proposed to study fault redundancyof aut...Considering the deficiency of the means for confirming the attribution of fault redundancy in the re-search of Automatic Testing System(ATS) , a fault-injection system has been proposed to study fault redundancyof automatic testing system through compurison. By means of a fault-imbeded environmental simulation, thefaults injected at the input level of the software are under test. These faults may induce inherent failure mode,thus bringing about unexpected output, and the anticipated goal of the test is attained. The fault injection con-sists of voltage signal generator, current signal generator and rear drive circuit which are specially developed,and the ATS can work regularly by means of software simulation. The experimental results indicate that the faultinjection system can find the deficiency of the automatic testing software, and identify the preference of fault re-dundancy. On the other hand, some soft deficiency never exposed before can be identified by analyzing the tes-ting results.展开更多
Failure detection module is one of important components in fault-tolerant distributed systems,especially cloud platform.However,to achieve fast and accurate detection of failure becomes more and more difficult especia...Failure detection module is one of important components in fault-tolerant distributed systems,especially cloud platform.However,to achieve fast and accurate detection of failure becomes more and more difficult especially when network and other resources' status keep changing.This study presented an efficient adaptive failure detection mechanism based on volterra series,which can use a small amount of data for predicting.The mechanism uses a volterra filter for time series prediction and a decision tree for decision making.Major contributions are applying volterra filter in cloud failure prediction,and introducing a user factor for different QoS requirements in different modules and levels of IaaS.Detailed implementation is proposed,and an evaluation is performed in Beijing and Guangzhou experiment environment.展开更多
Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on ...Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on the standard convolutional auto-encoder.In this model,the parallel convolutional and deconvolutional kernels of different scales are used to extract the features from the input signal and reconstruct the input signal;then the feature map extracted by multi-scale convolutional kernels is used as the input of the classifier;and finally the parameters of the whole model are fine-tuned using labeled data.Experiments on one set of simulation fault data and two sets of rolling bearing fault data are conducted to validate the proposed method.The results show that the model can achieve 99.75%,99.3%and 100%diagnostic accuracy,respectively.In addition,the diagnostic accuracy and reconstruction error of the one-dimensional multi-scale convolutional auto-encoder are compared with traditional machine learning,convolutional neural networks and a traditional convolutional auto-encoder.The final results show that the proposed model has a better recognition effect for rolling bearing fault data.展开更多
基金The National Science Foundation by Changjiang Scholarship of Ministry of Education of China(No.BCS-0527508)the Joint Research Fund for Overseas Natural Science of China(No.51250110075)+1 种基金the Natural Science Foundation of Jiangsu Province(No.SBK200910046)the Postdoctoral Science Foundation of Jiangsu Province(No.0901005C)
文摘In order to improve crash occurrence models to account for the influence of various contributing factors, a conditional autoregressive negative binomial (CAR-NB) model is employed to allow for overdispersion (tackled by the NB component), unobserved heterogeneity and spatial autocorrelation (captured by the CAR process), using Markov chain Monte Carlo methods and the Gibbs sampler. Statistical tests suggest that the CAR-NB model is preferred over the CAR-Poisson, NB, zero-inflated Poisson, zero-inflated NB models, due to its lower prediction errors and more robust parameter inference. The study results show that crash frequency and fatalities are positively associated with the number of lanes, curve length, annual average daily traffic (AADT) per lane, as well as rainfall. Speed limit and the distances to the nearest hospitals have negative associations with segment-based crash counts but positive associations with fatality counts, presumably as a result of worsened collision impacts at higher speed and time loss during transporting crash victims.
文摘In today's aircraft,the hardware redundancy is driven by the critical surfaces resulting in single point-failures.Reconfiguration technology remoVes the single surface criticality by employing control surfaces with aerodynamic redundancy.This paper studies a control reconfiguration scheme based on Control Mixer Concept.A technique for the design of a control mixer for an aircraft with damaged surfaces/actuators using the pseudo-inverse is developed and applied.This paper discusses its applications and limitations based on linear analysis and computer simulation.
基金Supported by the National High Technology Research and Development Program of China (‘863’Program) (2006AA12Z313)~~
文摘A new integrity metric for navigation systems is proposed based on the measurement domain. Proba-hilistic optimization design offers tools for fault detection by considering the required navigation performance (RNP) parameter and the uncertainty noise. The choice of the proper performance parameter provided the single-valued mapping with the missed detection probability estimates the probability of failure. The desirable characteristics of the residual sensitivity matrix are exploited to increase the efficiency for identifying erroneous observations. The algorithm can be used to support the performance specification and the efficient calculation of the integrity monitoring process. The simulation for non-precision approach (NPA) validates both the viability and the effectiveness of the proposed algorithm.
基金Project(51625503) supported by the National Science Fund for Distinguished Young Scholars,ChinaProject(61790561) supported by the National Natural Science Foundation of China+1 种基金Project(20163000124) supported by Tsinghua-Honda Joint Research,ChinaProject(TTS2017-02) supported by the Open Fund for Jiangsu Key Laboratory of Traffic and Transportation Security,China
文摘Advanced driver-assistance systems such as Honda’s collision mitigation brake system(CMBS)can help achieve traffic safety.In this paper,the naturalistic driving study and a series of simulations are combined to better evaluate the performance of the CMBS in the Chinese traffic environment.First,because safety-critical situations can be diverse especially in the Chinese environment,the Chinese traffic-accident characteristics are analyzed according to accident statistics over the past 17 years.Next,10 Chinese traffic-accident scenarios accounting for more than 80%of traffic accidents are selected.For each typical scenario,353 representative cases are collected from the traffic-management department of Beijing.These real-world accident cases are then reconstructed by the traffic-accident-reconstruction software PC-Crash on the basis of accident-scene diagrams.This study also proposes a systematic analytical process for estimating the effectiveness of the technology using the co-simulation platform of PC-Crash and rateEFFECT,in which 176 simulations are analyzed in detail to assess the accident-avoidance performance of the CMBS.The overall collision-avoidance effectiveness reaches 82.4%,showing that the proposed approach is efficient for avoiding collisions,thereby enhancing traffic safety and improving traffic management.
文摘Based on fault diagnosis and fault tolerant technologies, the mine-hoist active fault-tolerant control system (MAFCS) is presented with corresponding strategies,, which includes the fault diagnosis module (FDM), the dynamic library (DL) and the fault-tolerant control module (FCM). When a fault is judged from some sensor by FDM, FCM reconfigure the state of MAFCS by calling the parameters from all sub libraries in DL, in order to ensure the reliabil- ity and safety of mine hoist. The simulating result shows that, MAFCS is of certain intelligence, which can adopt the corresponding control strategies according to different fault modes, even when there are quite difference between the real data and the prior fault modes.
基金Supported by the National Basic Research Program of China(973 Program)under Grant(No.2012CB026000)the National High Technology Research and Development Program of China(No.2014AA041806)
文摘A method combining information entropy and radial basis function network is proposed for fault automatic diagnosis of reciprocating compressors.Aiming at the current situation that the accuracy rate of reciprocating compressor fault diagnosis which depends on manual work in engineering is very low,we apply information entropy evaluation to select the sensitive features and make clear the corresponding relationship of characteristic parameters and failures.This method could reduce the feature dimension.Then,a complete fault diagnosis architecture has been built combining with radial basis function network which has the fast and efficient characteristics.According to the test results using experimental and engineering data,it is observed that the proposed fault diagnosis method improves the accuracy of fault automatic diagnosis effectively and it could improve the practicability of the monitoring system.
基金Project(2012T50331)supported by China Postdoctoral Science FoundationProject(2008AA092301-2)supported by the High-Tech Research and Development Program of China
文摘Autonomous underwater vehicles(AUV) work in a complex marine environment. Its system reliability and autonomous fault diagnosis are particularly important and can provide the basis for underwater vehicles to take corresponding security policy in a failure. Aiming at the characteristics of the underwater vehicle which has uncertain system and modeling difficulty, an improved Elman neural network is introduced which is applied to the underwater vehicle motion modeling. Through designing self-feedback connection with fixed gain in the unit connection as well as increasing the feedback of the output layer node, improved Elman network has faster convergence speed and generalization ability. This method for high-order nonlinear system has stronger identification ability. Firstly, the residual is calculated by comparing the output of the underwater vehicle model(estimation in the motion state) with the actual measured values. Secondly, characteristics of the residual are analyzed on the basis of fault judging criteria. Finally, actuator fault diagnosis of the autonomous underwater vehicle is carried out. The results of the simulation experiment show that the method is effective.
基金Natural Science Foundation of Gansu Province(No.1310RJZA061)。
文摘Radio block center(RBC)system is the core equipment of China train control system-3(CTCS-3).Now,the fault analysis of RBC system mainly depends on manual work,and the diagnostic results are inaccurate and inefficient.Therefore,the intelligent fault diagnosis method of RBC system based on one-hot model,kernel principal component analysis(KPCA)and self-organizing map(SOM)network was proposed.Firstly,the fault document matrix based on one-hot model was constructed by the fault feature lexicon selected manually and fault tracking record table.Secondly,the KPCA method was used to reduce the dimension and noise of the fault document matrix to avoid information redundancy.Finally,the processed data were input into the SOM network to train the KPCA-SOM fault classification model.Compared with back propagation(BP)neural network algorithm and SOM network algorithm,common fault patterns of train control RBC system can be effectively distinguished by KPCA-SOM intelligent diagnosis model,and the accuracy and processing efficiency are further improved.
基金Sponsored by the National Natural Science Foundation of China(Grant No. NSFC-60572010)
文摘To solve the fault diagnosis problem of liquid propellant rocket engine ground testing bed,a fault diagnosis approach based on self-organizing map(SOM)is proposed.The SOM projects the multidimensional ground testing bed data into a two-dimensional map.Visualization of the SOM is used to cluster the ground testing bed data.The out map of the SOM is divided to several regions.Each region is represented for one fault mode.The fault mode of testing data is determined according to the region of their labels belonged to.The method is evaluated using the testing data of a liquid-propellant rocket engine ground testing bed with sixteen fault states.The results show that it is a reliable and effective method for fault diagnosis with good visualization property.
基金Support by the National Natural Science Foundation of China(61174114)the Research Fund for the Doctoral Program of Higher Education in China(20120101130016)Zhejiang Provincial Science and Technology Planning Projects of China(2014C31019)
文摘In chemical process, a large number of measured and manipulated variables are highly correlated. Principal component analysis(PCA) is widely applied as a dimension reduction technique for capturing strong correlation underlying in the process measurements. However, it is difficult for PCA based fault detection results to be interpreted physically and to provide support for isolation. Some approaches incorporating process knowledge are developed, but the information is always shortage and deficient in practice. Therefore, this work proposes an adaptive partitioning PCA algorithm entirely based on operation data. The process feature space is partitioned into several sub-feature spaces. Constructed sub-block models can not only reflect the local behavior of process change, namely to grasp the intrinsic local information underlying the process changes, but also improve the fault detection and isolation through the combination of local fault detection results and reduction of smearing effect.The method is demonstrated in TE process, and the results show that the new method is much better in fault detection and isolation compared to conventional PCA method.
基金The study was supported by the Key Cultivated Academic Construction Project of State Administrative Bureau for prophylactic medicine of Traditional Chinese Medicine(No.2012[170])Tianjin College Students'Innovation and Entrepreneurship Training Program(No.201510063040)
文摘Objectives:The purpose of the study was to investigate the nursing students'levels of the knowledge,willingness,and attitudes toward first aid behavior as bystanders in road traffic accident and the related factors.Methods:A total of 475 nursing students were recruited by convenience choosing in Tianjin University of Traditional Chinese Medicine.The nursing students'self-efficacy,core self-evaluation,knowledge,willingness and attitudes toward first aid behavior as bystanders in traffic accidents were investigated with a self-designed questionnaire.Results:The scores of knowledge,willingness,and attitudes toward first aid behavior in traffic accident trauma were 7.51±1.93,15.54±5.03,and 7.73±1.56,respectively.Students who once gained training of first aid showed lower levels of attitude toward first aid behavior than those untrained(t=-2.345,P=0.019).It was found that self-efficacy was correlated to the knowledge(r=0.150,P<0.001),willingness(r=0.182,P<0.004)and attitudes toward behavior of the first aid(r=0.371,P<0.001)among nursing students.Core self-evaluation was correlated to knowledge(r=0.193,P<0.001)and attitudes toward behavior of the first aid(r=0.199,P<0.001).Conclusions:The first aid knowledge among nursing students was not satisfactory.The study suggested that an unsustainable short first-aid training program may bring negative effects.Countermeasures should be taken to ensure both quality and continuity of first aid training.Meanwhile,more attention should be paid to improving the self-efficacy and core self-evaluation of the nursing students.
基金The National Key Research and Development Program of China(No.2017YFC0803902).
文摘In order to analyze the risky factors that affect vehicle-cyclist crash injury severity at the intersection area,especially the factors relating to the road users behaviors,an empirical study was conducted by collecting accident records from 2011 to 2015 from the General Estimates System.After preliminary screening,the variables were classified into 5 main categories including cyclists characteristic and behavior,drivers characteristic and behavior,vehicle characteristic,intersection condition,and time.The random parameter ordinal probit(RPOP)was used to study the significant influencing factors and corresponding heterogeneity.The results show that failing to obey traffic signals,failing to yield to right-of-way,dash and drinking before cycling can increase the injury severity for cyclists,and the corresponding fatal injury likelihoods increase by 53.2%,40.0%,86.3%,and 211.5%,respectively.Moreover,drivers inattention,speeding,going straight and left turning increase the risk of crashing for cyclists.The corresponding fatal injury likelihoods increase by 134.5%,186.5%,69.3%,and 22.7%,respectively.Other indicators such as age,gender,vehicle type,traffic signal and intersection type can also affect injury severity.
基金National Natural Science Foundation of China(No.61763023)。
文摘At present,ZPW-2000 track circuit fault diagnosis is artificially analyzed and monitored.Its discrimination method not only is low efficient and takes a long period,but also requires highly experienced personnel to analyze the data.Therefore,we introduce kernel principal component analysis and stacked auto-encoder network(KPCA-SAD)into the fault diagnosis of ZPW-2000 track circuit.According to the working principle and fault characteristics of track circuit,a fault diagnosis model of KPCA-SAE network is established.The relevant parameters of key components recorded in the data collected by field staff are used as the fault feature parameters.The KPCA method is used to reduce the dimension and noise of fault document matrix to avoid information redundancy.The SAE network is trained by the processed fault data.The model parameters are optimized overall by using back propagation(BP)algorithm.The KPCA-SAE model is simulated in Matlab platform and is finally proved to be effective and feasible.Compared with the traditional method of artificially analyzing fault data and other intelligent algorithms,the KPCA-SAE based classifier has higher fault identification accuracy.
基金Supported by the National Basic Research Program of China (2013CB733600), the National Natural Science Foundation of China (21176073), the Doctoral Fund of Ministry of Education of China (20090074110005), the Program for New Century Excellent Talents in University (NCET-09-0346), Shu Guang Project (09SG29) and the Fundamental Research Funds for the Central Universities.
文摘Fault diagnosis and monitoring are very important for complex chemical process. There are numerous methods that have been studied in this field, in which the effective visualization method is still challenging. In order to get a better visualization effect, a novel fault diagnosis method which combines self-organizing map (SOM) with Fisher discriminant analysis (FDA) is proposed. FDA can reduce the dimension of the data in terms of maximizing the separability of the classes. After feature extraction by FDA, SOM can distinguish the different states on the output map clearly and it can also be employed to monitor abnormal states. Tennessee Eastman (TE) process is employed to illustrate the fault diagnosis and monitoring performance of the proposed method. The result shows that the SOM integrated with FDA method is efficient and capable for real-time monitoring and fault diagnosis in complex chemical process.
文摘The interpretation of The Story of an Hour has been a heated topic in literature study. Many people believeitcriticizes the oppressionon female from male society. However, this paper holds that, from the perspective of New Criticism, a work should be interpreted based on the text.Therefore,thispapersuggests the story is about the confusion between freedom and fetter and deals with the subtle and complicated living status of human being.
基金Major State Basic Research Development Program,China(No.2005CB221505)Special Scientific Research Foundation for Doctoral Subject of Colleges and Universities in China(No.20050248058)
文摘Due to its great potentisl value in theory and application, fault-tolerant control atrategies of nonlinear systems, especially combining with intelligent control methods, have been a focus in the academe. A fault-tolerant control method based on fuzzy neural networks was presented for nonlinear systems in this paper. The fault parameters were designed to detect the fault, adaptive updating method was introduced to estimate and track fault, and fuzzy neural networks were used to adjust the fault parameters and construct automated fault diagnosis. And the fault compeusation control force, which was given by fault estimation, was used to realize adaptive fault-tolerant control. This framework leaded to a simple structure, an accurate detection, and a high robusmess. The simulation results in induction motor show that it is still able to work well with high dynamic performance and control precision under the condition of motor parameters' variation fault and load torque disturbance.
基金Sponsored by the National Natural Science Foundation of China (Grant No.60274058).
文摘Presents a novel approach for the sensor fault diagnosis of time-delay systems by using an adaptive observer technique. The sensor tault is modeled as an additive perturbation described by a time varying function. Systems without model uncertainty are initially considered, followed by a discussion of a general situation where the system is subjected to either model uncertainty or external disturbance. An adaptive diagnostic algorithm is developed to diagnose the fault, and a modified version is proposed for general system to improve robusiness. The stability of fault diagnosis system is proved. Finally, a numerical example is given to illustrate the efficiency of the proposed method.
基金Sponsored by the Fund of "the Tenth 5-year" Preparatory Project of National Defence(Grant No. 417010402)
文摘Considering the deficiency of the means for confirming the attribution of fault redundancy in the re-search of Automatic Testing System(ATS) , a fault-injection system has been proposed to study fault redundancyof automatic testing system through compurison. By means of a fault-imbeded environmental simulation, thefaults injected at the input level of the software are under test. These faults may induce inherent failure mode,thus bringing about unexpected output, and the anticipated goal of the test is attained. The fault injection con-sists of voltage signal generator, current signal generator and rear drive circuit which are specially developed,and the ATS can work regularly by means of software simulation. The experimental results indicate that the faultinjection system can find the deficiency of the automatic testing software, and identify the preference of fault re-dundancy. On the other hand, some soft deficiency never exposed before can be identified by analyzing the tes-ting results.
基金supported by the National High-tech Research and Development Program(863) of China under Grant No. 2011AA01A102
文摘Failure detection module is one of important components in fault-tolerant distributed systems,especially cloud platform.However,to achieve fast and accurate detection of failure becomes more and more difficult especially when network and other resources' status keep changing.This study presented an efficient adaptive failure detection mechanism based on volterra series,which can use a small amount of data for predicting.The mechanism uses a volterra filter for time series prediction and a decision tree for decision making.Major contributions are applying volterra filter in cloud failure prediction,and introducing a user factor for different QoS requirements in different modules and levels of IaaS.Detailed implementation is proposed,and an evaluation is performed in Beijing and Guangzhou experiment environment.
基金The National Natural Science Foundation of China(No.51675098)
文摘Aiming at the difficulty of fault identification caused by manual extraction of fault features of rotating machinery,a one-dimensional multi-scale convolutional auto-encoder fault diagnosis model is proposed,based on the standard convolutional auto-encoder.In this model,the parallel convolutional and deconvolutional kernels of different scales are used to extract the features from the input signal and reconstruct the input signal;then the feature map extracted by multi-scale convolutional kernels is used as the input of the classifier;and finally the parameters of the whole model are fine-tuned using labeled data.Experiments on one set of simulation fault data and two sets of rolling bearing fault data are conducted to validate the proposed method.The results show that the model can achieve 99.75%,99.3%and 100%diagnostic accuracy,respectively.In addition,the diagnostic accuracy and reconstruction error of the one-dimensional multi-scale convolutional auto-encoder are compared with traditional machine learning,convolutional neural networks and a traditional convolutional auto-encoder.The final results show that the proposed model has a better recognition effect for rolling bearing fault data.