期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于LMD和GNN-Adaboost的滚动轴承故障严重程度识别
被引量:
2
1
作者
詹晓燕
尤祥安
飞景明
《测控技术》
2019年第12期52-59,共8页
提出一种基于局部均值分解(Local Mean Decomposition,LMD)和遗传神经网络自适应增强(Genetic Neural Network Adaptive Boosting,GNN-Adaboost)的滚动轴承损伤程度识别方法。通过LMD方法将轴承振动信号分解为若干个瞬时频率有物理意义...
提出一种基于局部均值分解(Local Mean Decomposition,LMD)和遗传神经网络自适应增强(Genetic Neural Network Adaptive Boosting,GNN-Adaboost)的滚动轴承损伤程度识别方法。通过LMD方法将轴承振动信号分解为若干个瞬时频率有物理意义的乘积函数(Production Function,PF),对能反映信号主要特征的PF提取能量矩,结合原始振动信号的时域特征参数(方差、偏度、峭度),组成故障严重程度识别特征参数矩阵。将基于LMD方法的特征参数矩阵作为GNN-Adaboost方法的输入向量,对不同载荷与转速工况下的轴承进行故障严重程度识别。结果表明,基于LMD和GNN-Adaboost的方法能够有效提高轴承故障严重程度识别准确率,对滚动轴承等关键旋转部件的故障识别与定位具有重要意义。
展开更多
关键词
故障严重程度识别
局部均值分解
GNN-Adaboost
滚动轴承
下载PDF
职称材料
题名
基于LMD和GNN-Adaboost的滚动轴承故障严重程度识别
被引量:
2
1
作者
詹晓燕
尤祥安
飞景明
机构
北京卫星制造厂有限公司
出处
《测控技术》
2019年第12期52-59,共8页
文摘
提出一种基于局部均值分解(Local Mean Decomposition,LMD)和遗传神经网络自适应增强(Genetic Neural Network Adaptive Boosting,GNN-Adaboost)的滚动轴承损伤程度识别方法。通过LMD方法将轴承振动信号分解为若干个瞬时频率有物理意义的乘积函数(Production Function,PF),对能反映信号主要特征的PF提取能量矩,结合原始振动信号的时域特征参数(方差、偏度、峭度),组成故障严重程度识别特征参数矩阵。将基于LMD方法的特征参数矩阵作为GNN-Adaboost方法的输入向量,对不同载荷与转速工况下的轴承进行故障严重程度识别。结果表明,基于LMD和GNN-Adaboost的方法能够有效提高轴承故障严重程度识别准确率,对滚动轴承等关键旋转部件的故障识别与定位具有重要意义。
关键词
故障严重程度识别
局部均值分解
GNN-Adaboost
滚动轴承
Keywords
fault severity recognition
LMD
GNN-Adaboost
rolling bearing
分类号
TP15 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于LMD和GNN-Adaboost的滚动轴承故障严重程度识别
詹晓燕
尤祥安
飞景明
《测控技术》
2019
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部