提出一种基于复合神经网络的暂态稳定评估与故障临界切除时间(CCT)裕度预测新方法,它将概率神经网络(PNN)和径向基函数(RBF)网络组合使用,充分利用两者各自的优点,以提高暂态稳定评估能力和CCT裕度预测能力。该方法首先利用PNN进行暂态...提出一种基于复合神经网络的暂态稳定评估与故障临界切除时间(CCT)裕度预测新方法,它将概率神经网络(PNN)和径向基函数(RBF)网络组合使用,充分利用两者各自的优点,以提高暂态稳定评估能力和CCT裕度预测能力。该方法首先利用PNN进行暂态事故场景分类,分类时充分考虑了相邻故障样本类型重叠的影响;进一步采用RBF网络对分类结果进行裕度预测;最后,通过自检和校正以提高预测精度。利用New England 39节点系统,通过与反向传播(BP)神经网络、RBF神经网络等方法的比较,证明了本文方法的优越性。展开更多
文摘提出一种基于复合神经网络的暂态稳定评估与故障临界切除时间(CCT)裕度预测新方法,它将概率神经网络(PNN)和径向基函数(RBF)网络组合使用,充分利用两者各自的优点,以提高暂态稳定评估能力和CCT裕度预测能力。该方法首先利用PNN进行暂态事故场景分类,分类时充分考虑了相邻故障样本类型重叠的影响;进一步采用RBF网络对分类结果进行裕度预测;最后,通过自检和校正以提高预测精度。利用New England 39节点系统,通过与反向传播(BP)神经网络、RBF神经网络等方法的比较,证明了本文方法的优越性。