In order to improve the efficiency of automatic management and self-healing of the self-organizing network(SON),a cell outage problem is investigated and a cooperative prediction-based automatic cell outage detection ...In order to improve the efficiency of automatic management and self-healing of the self-organizing network(SON),a cell outage problem is investigated and a cooperative prediction-based automatic cell outage detection algorithm is proposed.By the improved collaborative filtering prediction algorithm,the location correlation of users in the wireless network is considered.By incorporating the cooperative grey model prediction algorithm,the time correlation of users motion trajectory is also introduced.Data of users in a normal scenario is simulated and collected for model training and threshold calculating and the outage cell can be effectively detected using the proposed approach.The simulation results demonstrate that the proposed scheme has a higher detection rate for different extents of outage while ensuring the lower communication overhead and false alarm rate than traditional outage detection methods.The detection rate of the proposed approach outperforms the traditional method by around 14%,especially when there are sparse users in the network,and it is able to detect the outage cell with no active users with the help of neighbor cells.展开更多
基金The National Natural Science Foundation of China(No.61571123,61521061)the Research Fund of National Mobile Communications Research Laboratory of Southeast University(No.2018A03,2019A03)+1 种基金the National Major Science and Technology Project(No.2017ZX03001002-004)the 333 Program of Jiangsu Province(No.BRA2017366)
文摘In order to improve the efficiency of automatic management and self-healing of the self-organizing network(SON),a cell outage problem is investigated and a cooperative prediction-based automatic cell outage detection algorithm is proposed.By the improved collaborative filtering prediction algorithm,the location correlation of users in the wireless network is considered.By incorporating the cooperative grey model prediction algorithm,the time correlation of users motion trajectory is also introduced.Data of users in a normal scenario is simulated and collected for model training and threshold calculating and the outage cell can be effectively detected using the proposed approach.The simulation results demonstrate that the proposed scheme has a higher detection rate for different extents of outage while ensuring the lower communication overhead and false alarm rate than traditional outage detection methods.The detection rate of the proposed approach outperforms the traditional method by around 14%,especially when there are sparse users in the network,and it is able to detect the outage cell with no active users with the help of neighbor cells.