A new rotor broken bar fault diagnosis method for induction motors based on the double PQ transformation is pre-sented. By distinguishing the different patterns of the PQ components in the PQ plane,the rotor broken ba...A new rotor broken bar fault diagnosis method for induction motors based on the double PQ transformation is pre-sented. By distinguishing the different patterns of the PQ components in the PQ plane,the rotor broken bar fault can be detected. The magnitude of power component directly resulted from rotor fault is used as the fault indicator and the distance between the point of no-load condition and the center of the ellipse as its normalization value. Based on these,the fault severity factor which is completely independent of the inertia and load level is defined. Moreover,a method to reliably discriminate between rotor faults and periodic load fluctuation is presented. Experimental results from a 4 kW induction motor demonstrated the validity of the proposed method.展开更多
This paper addresses the problem of robust Fault-Tolerant (FT) design for large-scale systems. This particular class constitutes complex system which can be decomposed into N-interconnected subsystems. Special atten...This paper addresses the problem of robust Fault-Tolerant (FT) design for large-scale systems. This particular class constitutes complex system which can be decomposed into N-interconnected subsystems. Special attention is paid to two different design architectures of an Active Fault-Tolerant Control (AFTC). An AFTCS is characterized by an online Fault Detection and Isolation (FDI) process and a control reconfiguration mechanism. As the AFTC system offers the possibility to choose different controllers, the controller may be the most appropriate choice for the faulty situation and obtaining better performance. The goal of each adaptive controller is to accommodate sensor anomalies. Continuous, Linear and Time Invariant (LTI) complex system with faulty sensors and external disturbances is proposed. This study focuses on two different internal structures of the system. In this paper the direct adaptive method based on feedback controller design is applied both centralized and decentralized architectures. The controller gain is updated online using an adaptive law which takes into account the estimation of the faults and the disturbances. Then from the both classes of systems structures the adaptation controller performances, in terms of stability and fault effect rejection capability, are studied and compared. The proposed techniques are finally evaluated in the light of a simulation for a centralized interconnected system that can be decomposed into N-subsystems with some strong interconnections.展开更多
The purpose of this paper is to analyze influence of design data on a component (1 - 2s)~ in stator currents of induction motors, mainly used for cage fault diagnosis. This paper shows that such an approach does not...The purpose of this paper is to analyze influence of design data on a component (1 - 2s)~ in stator currents of induction motors, mainly used for cage fault diagnosis. This paper shows that such an approach does not always lead to a correct outcome. The considerations are based on a "classical" model of induction motors extended to cage asymmetry by introducing cage asymmetry factors ko~ and ka. It has been found that in order to estimate the level of the component (1 - 2s)7~, it is enough to know the pole-pair number "p" and the number of rotor slots "N". The main objective of the paper is to provide engineers with simple qualitative prediction of effects due to cage faults for various motors when information on design data is very limited.展开更多
基金Project (No. 50677060) supported by the National Natural ScienceFoundation of China
文摘A new rotor broken bar fault diagnosis method for induction motors based on the double PQ transformation is pre-sented. By distinguishing the different patterns of the PQ components in the PQ plane,the rotor broken bar fault can be detected. The magnitude of power component directly resulted from rotor fault is used as the fault indicator and the distance between the point of no-load condition and the center of the ellipse as its normalization value. Based on these,the fault severity factor which is completely independent of the inertia and load level is defined. Moreover,a method to reliably discriminate between rotor faults and periodic load fluctuation is presented. Experimental results from a 4 kW induction motor demonstrated the validity of the proposed method.
文摘This paper addresses the problem of robust Fault-Tolerant (FT) design for large-scale systems. This particular class constitutes complex system which can be decomposed into N-interconnected subsystems. Special attention is paid to two different design architectures of an Active Fault-Tolerant Control (AFTC). An AFTCS is characterized by an online Fault Detection and Isolation (FDI) process and a control reconfiguration mechanism. As the AFTC system offers the possibility to choose different controllers, the controller may be the most appropriate choice for the faulty situation and obtaining better performance. The goal of each adaptive controller is to accommodate sensor anomalies. Continuous, Linear and Time Invariant (LTI) complex system with faulty sensors and external disturbances is proposed. This study focuses on two different internal structures of the system. In this paper the direct adaptive method based on feedback controller design is applied both centralized and decentralized architectures. The controller gain is updated online using an adaptive law which takes into account the estimation of the faults and the disturbances. Then from the both classes of systems structures the adaptation controller performances, in terms of stability and fault effect rejection capability, are studied and compared. The proposed techniques are finally evaluated in the light of a simulation for a centralized interconnected system that can be decomposed into N-subsystems with some strong interconnections.
文摘The purpose of this paper is to analyze influence of design data on a component (1 - 2s)~ in stator currents of induction motors, mainly used for cage fault diagnosis. This paper shows that such an approach does not always lead to a correct outcome. The considerations are based on a "classical" model of induction motors extended to cage asymmetry by introducing cage asymmetry factors ko~ and ka. It has been found that in order to estimate the level of the component (1 - 2s)7~, it is enough to know the pole-pair number "p" and the number of rotor slots "N". The main objective of the paper is to provide engineers with simple qualitative prediction of effects due to cage faults for various motors when information on design data is very limited.