In today's aircraft,the hardware redundancy is driven by the critical surfaces resulting in single point-failures.Reconfiguration technology remoVes the single surface criticality by employing control surfaces wit...In today's aircraft,the hardware redundancy is driven by the critical surfaces resulting in single point-failures.Reconfiguration technology remoVes the single surface criticality by employing control surfaces with aerodynamic redundancy.This paper studies a control reconfiguration scheme based on Control Mixer Concept.A technique for the design of a control mixer for an aircraft with damaged surfaces/actuators using the pseudo-inverse is developed and applied.This paper discusses its applications and limitations based on linear analysis and computer simulation.展开更多
Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes w...Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes with actuator failures. This paper introduces relevant concepts of the fault-tolerant guaranteed cost control and formulates the robust iterative learning reliable guaranteed cost controller (ILRGCC). A significant advantage is that the proposed ILRGCC design method can be used for on-line optimization against batch-to-batch process uncertainties to realize robust tracking of set-point trajectory in time and batch-to-batch sequences. For the convenience of implementation, only measured output errors of current and previous cycles are used to design a synthetic controller for iterative learning control, consisting of dynamic output feedback plus feed-forward control. The proposed controller can not only guarantee the closed-loop convergency along time and cycle sequences but also satisfy the H∞performance level and a cost function with upper bounds for all admissible uncertainties and any actuator failures. Sufficient conditions for the controller solution are derived in terms of linear matrix inequalities (LMIs), and design procedures, which formulate a convex optimization problem with LMI constraints, are presented. An example of injection molding is given to illustrate the effectiveness and advantages of the ILRGCC design approach.展开更多
The normal H ∞ control design deals with both plant modeling uncertainties and exogenous signal uncertainties by constructing a controller which stabilizes uncertain li near systems while satisfying an H ∞ norm ...The normal H ∞ control design deals with both plant modeling uncertainties and exogenous signal uncertainties by constructing a controller which stabilizes uncertain li near systems while satisfying an H ∞ norm bound constraint on disturbance attenuation for all admissible uncertainties. However, the control design may result in unsatisfactory performances or even instabilities in the event of sensor failures in practical plants. This paper focuses on the problem of the design of robust reliable H ∞ control for a class of time varying uncertainty system with sensor failures. The paper presents a novel technique which deal with this problem by solving three linear matrix inequalities (LMIs). The strict proof guarantees the feasibility of this approach.展开更多
The behavior of matrix converter(MC) drive systems under the condition of MC short-circuit faults is comprehensively investigated. Two isolation strategies using semiconductors and high speed fuses(HSFs) for MC short-...The behavior of matrix converter(MC) drive systems under the condition of MC short-circuit faults is comprehensively investigated. Two isolation strategies using semiconductors and high speed fuses(HSFs) for MC short-circuit faults are examined and their performances are compared. The behavior of MC drive systems during the fuse action time under different operating conditions is explored. The feasibility of fault-tolerant operation during the fuse action time is also studied. The basic selection laws for the HSFs and the requirements for the passive components of the MC drive system from the point view of short-circuit faults are also discussed. Simulation results are used to demonstrate the feasibility of the proposed isolation strategies.展开更多
In this paper, an approach for designing robust fault detection filter (RFDF) of networked control systems (NCSs) with unknown inputs is studied. The design aims at implementing the optimal trade-off between robustnes...In this paper, an approach for designing robust fault detection filter (RFDF) of networked control systems (NCSs) with unknown inputs is studied. The design aims at implementing the optimal trade-off between robustness of unknown inputs (including the item produced by networked-induced delay) and sensitivity of fault. The key design issue is to introduce an optimal fault detection filter based on NCSs with the control law compensation as the reference residual model of NCSs and to formulate the RFDF design as a model-matching problem. By applying H∞ optimization technique, linear matrix inequality (LMI) approach is given to solve the model-matching problem. The validity of the proposed approach is shown by a numerical example.展开更多
文摘In today's aircraft,the hardware redundancy is driven by the critical surfaces resulting in single point-failures.Reconfiguration technology remoVes the single surface criticality by employing control surfaces with aerodynamic redundancy.This paper studies a control reconfiguration scheme based on Control Mixer Concept.A technique for the design of a control mixer for an aircraft with damaged surfaces/actuators using the pseudo-inverse is developed and applied.This paper discusses its applications and limitations based on linear analysis and computer simulation.
基金Supported in part by NSFC/RGC joint Research Scheme (N-HKUST639/09), the National Natural Science Foundation of China (61104058, 61273101), Guangzhou Scientific and Technological Project (2012J5100032), Nansha district independent innovation project (201103003), China Postdoctoral Science Foundation (2012M511367, 2012M511368), and Doctor Scientific Research Foundation of Liaoning Province (20121046).
文摘Based on an equivalent two-dimensional Fornasini-Marchsini model for a batch process in industry, a closed-loop robust iterative learning fault-tolerant guaranteed cost control scheme is proposed for batch processes with actuator failures. This paper introduces relevant concepts of the fault-tolerant guaranteed cost control and formulates the robust iterative learning reliable guaranteed cost controller (ILRGCC). A significant advantage is that the proposed ILRGCC design method can be used for on-line optimization against batch-to-batch process uncertainties to realize robust tracking of set-point trajectory in time and batch-to-batch sequences. For the convenience of implementation, only measured output errors of current and previous cycles are used to design a synthetic controller for iterative learning control, consisting of dynamic output feedback plus feed-forward control. The proposed controller can not only guarantee the closed-loop convergency along time and cycle sequences but also satisfy the H∞performance level and a cost function with upper bounds for all admissible uncertainties and any actuator failures. Sufficient conditions for the controller solution are derived in terms of linear matrix inequalities (LMIs), and design procedures, which formulate a convex optimization problem with LMI constraints, are presented. An example of injection molding is given to illustrate the effectiveness and advantages of the ILRGCC design approach.
文摘The normal H ∞ control design deals with both plant modeling uncertainties and exogenous signal uncertainties by constructing a controller which stabilizes uncertain li near systems while satisfying an H ∞ norm bound constraint on disturbance attenuation for all admissible uncertainties. However, the control design may result in unsatisfactory performances or even instabilities in the event of sensor failures in practical plants. This paper focuses on the problem of the design of robust reliable H ∞ control for a class of time varying uncertainty system with sensor failures. The paper presents a novel technique which deal with this problem by solving three linear matrix inequalities (LMIs). The strict proof guarantees the feasibility of this approach.
基金Project(50807002) supported by the National Natural Science Foundation of ChinaProject(SKLD10KM05) supported by Opening Fund of State Key Laboratory of Power System and Generation EquipmentsProject(201206025007) supported by the National Scholarship Fund,China
文摘The behavior of matrix converter(MC) drive systems under the condition of MC short-circuit faults is comprehensively investigated. Two isolation strategies using semiconductors and high speed fuses(HSFs) for MC short-circuit faults are examined and their performances are compared. The behavior of MC drive systems during the fuse action time under different operating conditions is explored. The feasibility of fault-tolerant operation during the fuse action time is also studied. The basic selection laws for the HSFs and the requirements for the passive components of the MC drive system from the point view of short-circuit faults are also discussed. Simulation results are used to demonstrate the feasibility of the proposed isolation strategies.
文摘In this paper, an approach for designing robust fault detection filter (RFDF) of networked control systems (NCSs) with unknown inputs is studied. The design aims at implementing the optimal trade-off between robustness of unknown inputs (including the item produced by networked-induced delay) and sensitivity of fault. The key design issue is to introduce an optimal fault detection filter based on NCSs with the control law compensation as the reference residual model of NCSs and to formulate the RFDF design as a model-matching problem. By applying H∞ optimization technique, linear matrix inequality (LMI) approach is given to solve the model-matching problem. The validity of the proposed approach is shown by a numerical example.